How to get the prediction of test from 2D parameters of WLS regression in statsmodels
问题 I'm incrementally up the parameters of WLS regression functions using statsmodels. I have a 10x3 dataset X that I declared like this: X = np.array([[1,2,3],[1,2,3],[4,5,6],[1,2,3],[4,5,6],[1,2,3],[1,2,3],[4,5,6],[4,5,6],[1,2,3]]) This is my dataset, and I have a 10x2 endog vector that looks like this: z = [[ 3.90311860e-322 2.00000000e+000] [ 0.00000000e+000 2.00000000e+000] [ 0.00000000e+000 -2.00000000e+000] [ 0.00000000e+000 2.00000000e+000] [ 0.00000000e+000 -2.00000000e+000] [ 0