Spark SQL编程指南
Spark SQL 编程指南 Spark SQL是用于结构化数据处理的一个模块。同Spark RDD 不同地方在于Spark SQL的API可以给Spark计算引擎提供更多地 信息,例如:数据结构、计算算子等。在内部Spark可以通过这些信息有针对对任务做优化和调整。这里有几种方式和Spark SQL进行交互,例如Dataset API和SQL等,这两种API可以混合使用。Spark SQL的一个用途是执行SQL查询。 Spark SQL还可用于从现有Hive安装中读取数据。从其他编程语言中运行SQL时,结果将作为Dataset/DataFrame返回,使用命令 行或JDBC / ODBC与SQL接口进行交互。 Dataset是一个分布式数据集合在Spark 1.6提供一个新的接口,Dataset提供RDD的优势(强类型,使用强大的lambda函 数)以及具备了Spark SQL执行引擎的优点。Dataset可以通过JVM对象构建,然后可以使用转换函数等(例如:map、flatMap、filter等),目前Dataset API支持Scala和Java 目前Python对Dataset支持还不算完备。 DataFrame是命名列的数据集,他在概念是等价于关系型数据库。DataFrames可以从很多地方构建,比如说结构化数据文 件、hive中的表或者外部数据库,使用Dataset