MySQL数据库分库分表策略
第1章 引言 随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题。对于一个大型的互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载。对于系统的稳定性和扩展性造成了极大的问题。通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式。 水平切分数据库:可以降低单台机器的负载,同时最大限度的降低了宕机造成的损失; 负载均衡策略:可以降低单台机器的访问负载,降低宕机的可能性; 集群方案:解决了数据库宕机带来的单点数据库不能访问的问题; 读写分离策略:最大限度了提高了应用中读取数据的速度和并发量; 第2章 基本原理和概念 什么是数据切分 "Shard" 这个词英文的意思是"碎片",而作为数据库相关的技术用语,似乎最早见于大型多人在线角色扮演游戏中。"Sharding" 姑且称之为"分片"。Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是水平扩展(Scale Out,亦或横向扩展、向外扩展)的解决方案, 其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。 通过一系列的切分规则将数据水平分布到不同的DB或table中,在通过相应的DB路由或者table路由规则找到需要查询的具体的DB或者table,以进行Query操作。“sharding”通常是指“水平切分”