Understanding ROC curve
问题 import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc , roc_auc_score import numpy as np correct_classification = np.array([0,1]) predicted_classification = np.array([1,1]) false_positive_rate, true_positive_rate, tresholds = roc_curve(correct_classification, predicted_classification) print(false_positive_rate) print(true_positive_rate) From https://en.wikipedia.org/wiki/Sensitivity_and_specificity : True positive: Sick people correctly identified as sick False positive: