roc

ROC曲线、KS曲线

匆匆过客 提交于 2019-12-01 15:27:54
一、ROC曲线 ROC曲线由混淆矩阵为基础数据生成。 纵坐标:真阳性率TPR,预测为正占真正为正的比例。 横坐标:假阳性率FPR,预测为正占真正为负的比例。 如何根据数据画出ROC曲线? 设定不同的cutoff值,针对每个cutoff值计算混淆矩阵,求出对应的横纵坐标,做图。 二、KS曲线 累计坏样本比例-累计好样本比例 来源: https://www.cnblogs.com/ironan-liu/p/11690674.html

ROC曲线详解

谁都会走 提交于 2019-12-01 09:48:41
转自 https://blog.csdn.net/qq_26591517/article/details/80092679 1 ROC曲线的概念 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为 感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一 信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以假阳性概率(False positive rate)为 横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。 ROC 曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。传统的诊断试验评价方 法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。ROC曲线的评价方法与传统的评价方法不同,无须此限制,而是根据实际情况,允许有中间状 态,可以把试验结果划分为多个有序分类,如正常、大致正常、可疑、大致异常和异常五个等级再进行统计分析。因此,ROC曲线评价方法适用的范围更为广泛。 2 ROC曲线的例子 考虑一个二分问题,即将实例分成正类(positive)或负类(negative)

Making ROC curve using python for multiclassification

大兔子大兔子 提交于 2019-12-01 09:07:21
Following up from here: Converting a 1D array into a 2D class-based matrix in python I want to draw ROC curves for each of my 46 classes. I have 300 test samples for which I've run my classifier to make a prediction. y_test is the true classes, and y_pred is what my classifier predicted. Here's my code: from sklearn.metrics import confusion_matrix, roc_curve, auc from sklearn.preprocessing import label_binarize import numpy as np y_test_bi = label_binarize(y_test, classes=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19,20,21,2,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,3,40,41,42,43

Making ROC curve using python for multiclassification

给你一囗甜甜゛ 提交于 2019-12-01 07:06:29
问题 Following up from here: Converting a 1D array into a 2D class-based matrix in python I want to draw ROC curves for each of my 46 classes. I have 300 test samples for which I've run my classifier to make a prediction. y_test is the true classes, and y_pred is what my classifier predicted. Here's my code: from sklearn.metrics import confusion_matrix, roc_curve, auc from sklearn.preprocessing import label_binarize import numpy as np y_test_bi = label_binarize(y_test, classes=[0,1,2,3,4,5,6,7,8,9

ValueError: Data is not binary and pos_label is not specified

人走茶凉 提交于 2019-12-01 02:17:46
I am trying to calculate roc_auc_score , but I am getting following error. "ValueError: Data is not binary and pos_label is not specified" My code snippet is as follows: import numpy as np from sklearn.metrics import roc_auc_score y_scores=np.array([ 0.63, 0.53, 0.36, 0.02, 0.70 ,1 , 0.48, 0.46, 0.57]) y_true=np.array(['0', '1', '0', '0', '1', '1', '1', '1', '1']) roc_auc_score(y_true, y_scores) Please tell me what is wrong with it. You only need to change y_true so it looks like this: y_true=np.array([0, 1, 0, 0, 1, 1, 1, 1, 1]) Explanation: If you take a look to what roc_auc_score functions

超参数的调优(lightgbm)

自作多情 提交于 2019-11-30 08:43:12
参考 原文 Automated Hyperparameter Optimization 超参数的优化过程:通过自动化 目的:使用带有策略的启发式搜索(informed search)在更短的时间内找到最优超参数,除了初始设置之外,并不需要额外的手动操作。 实践部分 贝叶斯优化问题有四个组成部分: 目标函数:我们想要最小化的对象,这里指带超参数的机器学习模型的验证误差 域空间:待搜索的超参数值 优化算法:构造代理模型和选择接下来要评估的超参数值的方法 结果的历史数据:存储下来的目标函数评估结果,包含超参数和验证损失 通过以上四个步骤,我们可以对任意实值函数进行优化(找到最小值)。这是一个强大的抽象过程,除了机器学习超参数的调优,它还能帮我们解决其他许多问题。 代码示例 数据集:https://www.jiqizhixin.com/articles/2018-08-08-2 目标:预测客户是否会购买一份保险产品 监督分类问题 观测值:5800 测试点:4000 不平衡的分类问题,本文使用的评价性能的指标是受试者工作特征曲线下的面积(ROC AUC),ROC AUC 的值越高越好,其值为 1 代表模型是完美的。 什么是不平衡的分类问题? 如何处理数据中的「类别不平衡」? 极端类别不平衡数据下的分类问题S01:困难与挑战 hyperropt1125.py - 导入库 import

How can I get The optimal cutoff point of the ROC in logistic regression as a number

人走茶凉 提交于 2019-11-30 07:37:09
I would like to get the optimal cut off point of the ROC in logistic regression as a number and not as two crossing curves. Using the code below I can get the plot that will show the optimal point but in some cases I just need the point as a number that I can use for other calculations. Here are the code lines: library(Epi) ROC( form = IsVIP ~ var1+var2+var3+var4+var5, plot="sp", data=vip_data ) Thanks As per documentation the optimal cut-off point is defined as the point where Sensitivity + Specificity is maximal (see MX argument in ?ROC ). You can get the according values as follows (see

可视化: Python—MatPlotLib—多模型的ROC曲线

让人想犯罪 __ 提交于 2019-11-30 02:11:38
文章目录 示例 代码 解释 示例 代码 from sklearn.metrics import roc_curve, auc import matplotlib as mpl import matplotlib.pyplot as plt plt.figure ( figsize = ( 15, 10 )) def plot_roc ( labels, predict_probs, titles ) : color = [ 'r' , 'g' , 'b' , 'y' ] shape = [ 'o' , 'v' , '^' ] for idx, predict_prob in enumerate ( predict_probs ) : false_positive_rate,true_positive_rate,thresholds = roc_curve ( labels, predict_prob ) roc_auc = auc ( false_positive_rate, true_positive_rate ) plt.title ( 'ROC' ) c = color [ idx%len ( color ) ] s = shape [ idx%len ( shape ) ] plt.plot ( false_positive_rate, true_positive_rate

How to interpret almost perfect accuracy and AUC-ROC but zero f1-score, precision and recall

半城伤御伤魂 提交于 2019-11-29 20:12:37
I am training ML logistic classifier to classify two classes using python scikit-learn. They are in an extremely imbalanced data (about 14300:1). I'm getting almost 100% accuracy and ROC-AUC, but 0% in precision, recall, and f1 score. I understand that accuracy is usually not useful in very imbalanced data, but why is the ROC-AUC measure is close to perfect as well? from sklearn.metrics import roc_curve, auc # Get ROC y_score = classifierUsed2.decision_function(X_test) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_score) roc_auc = auc(false_positive_rate, true