ValueError: Data is not binary and pos_label is not specified

人走茶凉 提交于 2019-12-01 02:17:46

You only need to change y_trueso it looks like this:

y_true=np.array([0, 1, 0, 0, 1, 1, 1, 1, 1])

Explanation: If you take a look to what roc_auc_score functions does in https://github.com/scikit-learn/scikit-learn/blob/0.15.X/sklearn/metrics/metrics.py you will see that y_true is evaluated as follows:

classes = np.unique(y_true)
if (pos_label is None and not (np.all(classes == [0, 1]) or
 np.all(classes == [-1, 1]) or
 np.all(classes == [0]) or
 np.all(classes == [-1]) or
 np.all(classes == [1]))):
    raise ValueError("Data is not binary and pos_label is not specified")

At the moment of the execution pos_label is None, but as long as your are defining y_true as an array of characters the np.all are always false and as all of them are negated then the if condition is trueand the exception is raised.

We have problem in y_true=np.array(['0', '1', '0', '0', '1', '1', '1', '1', '1']) Convert values of y_true to Boolean

y_true= '1' <= y_true
print(y_true) # [False  True False False  True  True  True  True  True]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!