regression

ML.NET机器学习、API容器化与Azure DevOps实践(一):简介

為{幸葍}努か 提交于 2020-07-29 06:08:20
打算使用几篇文章介绍一下.NET下的机器学习框架ML.NET的具体应用,包括一些常用的业务场景、算法的选择、模型的训练以及RESTful API的创建、机器学习服务容器化,以及基于Azure DevOps的容器化部署等等相关的内容。如果你从来没有玩过机器学习,也从来没有了解过ML.NET,那么,本文将会是一个很好的开始。 机器学习 机器学习是一种对算法和统计数据模型进行科学学习的方式,通过使用这种方式,计算机系统能够有效地基于模式与推断,而非遵循特定的指令序列来完成一项特定的任务。机器学习是人工智能科学的一个分支,属于人工智能范畴。 (参考: https://en.wikipedia.org/wiki/Machine_learning )。 分类 机器学习可以分为如下几类: 监督学习(Supervised Learning) 无监督学习(Unsupervised Learning) 半监督学习(Semi-supervised Learning) 增强学习(Reinforcement Learning) 监督学习 从给定的训练数据集中学习出一种算法,当的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见算法分为: 统计分类 (Classification,根据训练模型,通过给定的特征属性

[论文速览] CVPR 2020 那些有趣的图像超分辨算法(9篇)(1/2)

纵饮孤独 提交于 2020-07-28 08:21:40
[论文速览] CVPR 2020 那些有趣的图像超分辨算法(共9篇)(1/2) 关键词: Unpaired; Pseudo-Supervision; Gradient Guidance; Texture Transformer Network; Deep Unfolding Network; Meta-Transfer; Zero-Shot; Super-Resolution 本文以速览形式,带领大家大概了解一下 CVPR2020 那些有趣(重要)的 SR 文章,目的是快速了解 SR 的最新动向(解决什么问题,采用什么模型)。 共分为两期博客分别介绍。这是第一期,第二期的链接: [论文速览] CVPR 2020 那些重要的图像超分辨算法(共9篇)(2/2)【持续更新中】 目录 ———————— 第一期 ———————— [论文速览] CVPR 2020 那些有趣的图像超分辨算法(共9篇)(1/2) Unpaired Image Super-Resolution Using Pseudo-Supervision [pdf] [supp] [bibtex] Abstract Loss Functions Network Architecture Structure-Preserving Super Resolution With Gradient Guidance [pdf]

八年阿里测试大佬,对非UI自动化测试和UI自动化测试理解与分析!!! 机密文件!!!随时会删!!!

a 夏天 提交于 2020-07-26 10:25:51
先抄一段话,来说什么是自动化测试:Test automation In software testing, test automation is the use of special software (separate from the software being tested) to control the execution of tests and the comparison of actual outcomes with predicted outcomes. (在软件测试中,测试自动化是使用特殊的软件(与被测试的软件分离)来控制测试的执行以及实际结果与预测结果的比较。) 本篇文章也不打算总结有多少种测试,他们怎么分类,我们只讲自动化测试…… 上边一段话也讲了什么是自动化测试,简单来讲就是一个操作软件的软件,然后可以对操作的结果进行验证。这里的定义是跟被测软件分离,这个我不是很同意这句话,有些自动化测试是进程内的,需要inject代码来运行测试代码,甚至有些直接类似病毒附加二进制代码并且运行在被测程序的进程内(确实见过一个软件是这么做的,直接改二进制代码然后在进程内运行一个socket server来执行测试)。 既然是一种软件,那我们就简单按照有没有UI,分为非UI和UI的自动化测试程序: 常见的非UI自动化 大部分的Unit Test API test

人像静态/动态贴纸特效算法实现

橙三吉。 提交于 2020-07-24 22:49:06
人像静态 / 动态贴纸特效几乎已经是所有图像视频处理类 / 直播类 app 的必需品了,这个功能看起来复杂,实际上很简单,本文将给大家做个详细的讲解。图玩智能科技为企业提供更优质更稳定的美颜产品及服务,欢迎随时咨询 www.toivan.com. 我们先来看一下两张效果图: 这两张效果图中, 我们可以看到一些可爱的圣诞帽贴纸和小鹿形象贴纸,在人脸区域,自动贴上不同的贴纸,便会生成很多有趣的特效,这也是大家爱不释手的原因。 我们从静态贴纸讲起,动态贴纸实际上是静态贴纸的循环播放而已。人像静态贴纸的鼻祖是 in app ,而后 FaceU 的动态贴纸风靡一时,现在静态 / 动态贴纸已经随处可见了。它的算法分为两个部分: 1. 人脸检测与关键点识别 所谓人像贴纸,第一步必然是人脸检测与关键点识别。在有人脸的情况下获取到必须的关键点,这样我们才能准确的打上贴纸。现有的 app 中,比如 FaceU 和轻颜相机,当然他们是一家的,他们的贴纸基本上都是数十个人脸特征点的模板配置,也就是说,完成一个贴纸效果,需要数十个点位信息的支持。不过,个人认为,最简单的贴纸,可以从三个点开始。 关于人脸特征点识别算法,相关的论文或者开源的代码工程,已经多如牛毛,这里我不一一例举,本人这里以 mtcnn 为例,因为本文算法只需要三个点即可。 mtcnn 在检测到人脸的情况下,会给我们提供 5 个特征点

What does the background area mean in seaborn regression plot?

寵の児 提交于 2020-07-21 03:47:25
问题 What does the background in blue mean or determine in the regression plot when using seaborn? What determines its width at both ends? 回答1: According to seaborn documentation, that area rappresents the confidence interval . You can set it through the ci parameter: Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to

What does the background area mean in seaborn regression plot?

本小妞迷上赌 提交于 2020-07-21 03:47:13
问题 What does the background in blue mean or determine in the regression plot when using seaborn? What determines its width at both ends? 回答1: According to seaborn documentation, that area rappresents the confidence interval . You can set it through the ci parameter: Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to

What does the background area mean in seaborn regression plot?

十年热恋 提交于 2020-07-21 03:46:25
问题 What does the background in blue mean or determine in the regression plot when using seaborn? What determines its width at both ends? 回答1: According to seaborn documentation, that area rappresents the confidence interval . You can set it through the ci parameter: Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to

R formula - how to write a series with summation in a compact way?

无人久伴 提交于 2020-07-19 06:35:48
问题 I need to fit a Dunham expansion using R. It means, that I'd like to use nls() function to fit the formula with Yk,l being the fitted parameters. Of course I could expand it "by hand" for a certain ranges of k and l , but I'd like to know, if there is any way to write such R-formula in a more elegant way? I had a look at Creating a summation formula in R, but it seems, that the point of the question is creation of an R-function itself and not a formula for regression functions. 回答1: You can

Perform feature selection in Tensorflow

微笑、不失礼 提交于 2020-07-18 07:22:16
问题 Started with Machine learning in Python recently. I am working on a Python project involving regression to predict some values. The input is a data set consisting of 70 features which are a mix of categorical and ordinal variables. The dependent variable is continuous . The input would be data and the number of significant variables . i had some questions which are mentioned below. 1] Is there a way to perform feature selection using forward selection technique in Tensorflow ? 2] are there

Applying yearwise segmented regression in R

随声附和 提交于 2020-07-10 10:26:33
问题 I have daily rainfall data which I have converted to yearwise cumulative value using following code library(seas) library(data.table) library(ggplot2) #Loading data data(mscdata) dat <- (mksub(mscdata, id=1108447)) dat$julian.date <- as.numeric(format(dat$date, "%j")) DT <- data.table(dat) DT[, Cum.Sum := cumsum(rain), by=list(year)] df <- cbind.data.frame(day=dat$julian.date,cumulative=DT$Cum.Sum) Then I want to apply segmented regression year-wise to have year-wise breakpoints. I could able