regression

做目标检测,这6篇就够了:CVPR 2020目标检测论文盘点

时光毁灭记忆、已成空白 提交于 2020-08-06 04:02:39
点击上方 “ 小白学视觉 ”,选择加" 星标 "或“ 置顶 ” 重磅干货,第一时间送达 选自heartbeat 作者: Derrick Mwiti 转载:机器之心 参与:陈萍 CVPR 2020 会议上,有哪些目标检测论文值得关注? 目标检测是计算机视觉中的经典问题之一。凭借大量可用数据、更快的 GPU 和更好的算法,现在我们可以轻松训练计算机以高精度检测出图像中的多个对象。 前不久结束的 CVPR 2020 会议在推动目标检测领域发展方面做出了一些贡献,本文就为大家推荐其中 6 篇有价值的目标检测论文。 论文清单 A Hierarchical Graph Network for 3D Object Detection on Point Clouds HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud Camouflaged Object Detection Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector D2Det: Towards High-Quality

不一样的「注意力」:人机交互注意力的测量指标与利用

為{幸葍}努か 提交于 2020-08-05 18:06:55
本文将探讨人机交互中的注意力问题。 机器之心分析师网络,作者:仵冀颖,编辑:Joni Zhong。 本文我们关注注意力(Attention)问题。在这里,我们谈到的注意力与大家非常熟悉的机器学习中的注意力模型(Attention Model,AM)不同,本文讨论的是人机交互中的注意力问题。 人机交互中的这种注意力也被称为是用户的关注焦点(User's focus Of Attention)。人机交互中的注意力是构造社交机器人(Social Robot)的重要问题,也在普适计算和智能空间等人机交互应用中起到非常重要的作用,因为在这些应用中,必须能够持续的监控用户的目标和意图。 通过引入并有效测量注意力,能够改进人机交互的方式、效率和效果。一般认为,主要通过眼睛注视(Eye gaze)和头部姿势动态(Head)等来确定注意力 [1]。针对这些测量指标,研究者需要结合机器视觉和其他传感技术,测量和计算交互中的注意力指标,并且利用这些指标对机器人的行为进行控制。另一方面,这些指标也可以作为衡量社交机器人或者机器人辅助治疗中的效果。 本文首先介绍了一种用于社交机器人的人机交互方法,该方法根据目标人当前的视觉注意力焦点来吸引和控制目标人的注意力,从而建立人和机器人之间的沟通渠道。这也是社交机器人中注意力的最直接的研究和应用。此外,本文还介绍了两个在人与机器交流场景中的注意力应用

ML.NET机器学习、API容器化与Azure DevOps实践(二):案例

…衆ロ難τιáo~ 提交于 2020-08-05 05:14:46
在上文中,我简单地介绍了机器学习以及ML.NET的相关知识,从本讲开始,我会基于一个简单的案例:学生成绩预测,来介绍使用ML.NET进行机器学习以及API部署的基本过程。 学生成绩预测案例 本案例的数据来源为加州大学尔湾分校的机器学习公开样本数据集,数据介绍页面和下载地址为: https://archive.ics.uci.edu/ml/datasets/Student+Performance 。该数据集包含了来自两所学校的学生的问卷调查结果,以及每位学生的综合成绩。数据集为CSV格式,每个字段的含义在官网上都有详细介绍,因此,在这里就不再赘述了。 确定问题类型 我们的任务很简单,就是基于这套已有的学生问卷调查结果以及综合成绩,进行机器学习模型训练,然后,再根据一套给定的学生情况信息,来预测该名学生的综合成绩。不难发现,我们需要使用监督学习中的回归算法来进行模型训练,因为我们需要得到一个连续的预测值,而不是离散的二元或者多元值。在确定了我们的任务之后,就可以对得到的数据集进行一些预处理,以便机器学习的过程能够顺利进行。 数据预处理与数据分析 在得到训练数据集之后,通常不能直接拿来进行机器学习,需要对数据进行一些处理。数据预处理任务大致有: 数据格式规整化:对每一列的数据进行类型和单位统一,比如,“浓度”字段有些行使用的是ug/mL,有些行使用的是g/L,需要对单位进行统一,并将

从经典到最新前沿,一文概览2D人体姿态估计

烈酒焚心 提交于 2020-08-04 19:32:40
点击上方“ 3D视觉工坊 ”,选择“星标” 干货第一时间送达 作者:谢一宾 | 来源:知乎 https://zhuanlan.zhihu.com/p/140060196 本文仅做学术分享,如有侵权,请联系删除。 前言 本文主要讨论2D的人体姿态估计,内容主要包括:基本任务介绍、存在的主要困难、方法以及个人对这个问题的思考等等。希望大家带着批判的目光阅读这篇文章,和谐讨论。 介绍 2D人体姿态估计的目标是定位并识别出人体关键点,这些关键点按照关节顺序相连,就可以得到人体的躯干,也就得到了人体的姿态。 在深度学习时代之前,和其他计算机视觉任务一样,都是借助于精心设计的特征来处理这个问题的,比如pictorial structure。凭借着CNN强大的特征提取能力,姿态估计这个领域得到了长足的发展。2D人体姿态估计主要可以分为单人姿态估计(Single Person Pose Estimation, SPPE)和多人姿态估计(Multi-person Pose Estimation, MPPE)两个子任务。 单人姿态估计是基础,在这个问题中,我们要做的事情就是给我们一个人的图片,我们要找出这个人的所有关键点,常用的MPII数据集就是单人姿态估计的数据集。 在多人姿态估计中,我们得到的是一张多人的图,我们需要找出这张图中的所有人的关键点。对于这个问题,一般有自上而下(Top-down

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

拟墨画扇 提交于 2020-08-04 15:44:22
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 前言 之前我所在的公司七月在线开设的深度学习等一系列课程经常会讲目标检测,包括R-CNN、Fast R-CNN、Faster R-CNN,但一直没有比较好的机会深入(但当你对目标检测有个基本的了解之后,再看 这些课程 你会收益很大)。但目标检测这个领域实在是太火了,经常会看到一些写的不错的通俗易懂的资料,加之之前在京东上掏了一本书看了看,就这样耳濡目染中,还是开始研究了。 今年五一,从保定回京,怕高速路上堵 没坐大巴,高铁又没抢上,只好选择哐当哐当好几年没坐过的绿皮车,关键还不断晚点。在车站,用手机做个热点,修改 题库 ,顺便终于搞清R-CNN、fast R-CNN、faster R-CNN的核心区别。有心中热爱 何惧任何啥。 为纪念这心中热爱,故成此文。 一、目标检测常见算法 object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。 然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。 目前学术和工业界出现的目标检测算法分成3类: 1. 传统的目标检测算法

L1 norm instead of L2 norm for cost function in regression model

时光总嘲笑我的痴心妄想 提交于 2020-08-02 09:45:42
问题 I was wondering if there's a function in Python that would do the same job as scipy.linalg.lstsq but uses “least absolute deviations” regression instead of “least squares” regression (OLS). I want to use the L1 norm, instead of the L2 norm. In fact, I have 3d points, which I want the best-fit plane of them. The common approach is by the least square method like this Github link. But It's known that this doesn't give the best fit always, especially when we have interlopers in our set of data.

L1 norm instead of L2 norm for cost function in regression model

给你一囗甜甜゛ 提交于 2020-08-02 09:45:03
问题 I was wondering if there's a function in Python that would do the same job as scipy.linalg.lstsq but uses “least absolute deviations” regression instead of “least squares” regression (OLS). I want to use the L1 norm, instead of the L2 norm. In fact, I have 3d points, which I want the best-fit plane of them. The common approach is by the least square method like this Github link. But It's known that this doesn't give the best fit always, especially when we have interlopers in our set of data.

L1 norm instead of L2 norm for cost function in regression model

旧时模样 提交于 2020-08-02 09:43:32
问题 I was wondering if there's a function in Python that would do the same job as scipy.linalg.lstsq but uses “least absolute deviations” regression instead of “least squares” regression (OLS). I want to use the L1 norm, instead of the L2 norm. In fact, I have 3d points, which I want the best-fit plane of them. The common approach is by the least square method like this Github link. But It's known that this doesn't give the best fit always, especially when we have interlopers in our set of data.

L1 norm instead of L2 norm for cost function in regression model

本小妞迷上赌 提交于 2020-08-02 09:42:53
问题 I was wondering if there's a function in Python that would do the same job as scipy.linalg.lstsq but uses “least absolute deviations” regression instead of “least squares” regression (OLS). I want to use the L1 norm, instead of the L2 norm. In fact, I have 3d points, which I want the best-fit plane of them. The common approach is by the least square method like this Github link. But It's known that this doesn't give the best fit always, especially when we have interlopers in our set of data.

Linear combination of regression coefficients in R [closed]

放肆的年华 提交于 2020-07-31 04:55:25
问题 Closed . This question needs details or clarity. It is not currently accepting answers. Want to improve this question? Add details and clarify the problem by editing this post. Closed 2 years ago . Improve this question I need to run a multiple regression in R, with the variables X1, X2 and X3, where there is a variable θ = β2 + β3. So instead of β2, for the coefficient of X2 I need to use (θ - β3). How could I do this? 回答1: Note that Y = b1 * x1 + (t - b3) * x2 + b3 * x3 is equivalent to Y =