regression

Quadratic regression line using R plotly

感情迁移 提交于 2020-12-11 08:52:15
问题 I am quite new to R and really new in plotly . I am trying to plot a quadratic (i.e. 2nd-degree polynomial) regression line. Once some prices vs years, and once the same prices vs a list of certain integer numbers (which can be the same), let's say scores. The data in this example are price = c(995, 675, 690, 600, 612, 700, 589, 532, 448, 512, 537, 560) score = c(89, 91, 88, 89, 91, 91, 89, 93, 83, 91, 91, 90) year = c(2005:2016) The first fit works well by coding enter code here qfit1 <- lm

Quadratic regression line using R plotly

两盒软妹~` 提交于 2020-12-11 08:46:34
问题 I am quite new to R and really new in plotly . I am trying to plot a quadratic (i.e. 2nd-degree polynomial) regression line. Once some prices vs years, and once the same prices vs a list of certain integer numbers (which can be the same), let's say scores. The data in this example are price = c(995, 675, 690, 600, 612, 700, 589, 532, 448, 512, 537, 560) score = c(89, 91, 88, 89, 91, 91, 89, 93, 83, 91, 91, 90) year = c(2005:2016) The first fit works well by coding enter code here qfit1 <- lm

Matplotlib - Plot multiple lines on the same chart [duplicate]

生来就可爱ヽ(ⅴ<●) 提交于 2020-12-07 07:15:14
问题 This question already has answers here : Python equivalent to 'hold on' in Matlab (4 answers) Closed 4 years ago . This has been surprisingly difficult to find information on. I have two functions that I want to chart together, enumeration() and betterEnumeration() import matplotlib.pyplot as plt import time import numpy as np import sympy from sympy import S, symbols import random from math import floor def enumeration(array): max = None to_return = (max, 0, 0) for i in range(0, len(array) +

parallel regression in R (maybe with snowfall)

混江龙づ霸主 提交于 2020-12-06 15:47:25
问题 I'm trying to run R in parallel to run a regression. I'm trying to use the snowfall library (but am open to any approach). Currently, I'm running the following regression which is taking an extremely long time to run. Can someone show me how to do this? sales_day_region_ctgry_lm <- lm(log(sales_out+1)~factor(region_out) + date_vector_out + factor(date_vector_out) + factor(category_out) + mean_temp_out) I've started down the following path: library(snowfall) sfInit(parallel = TRUE, cpus=4,

OpenCV实战:人脸关键点检测(FaceMark)

落花浮王杯 提交于 2020-12-06 14:51:54
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 Note: OpenCV3.4以及上支持Facemark 原文: OpenCV实战:人脸关键点检测(FaceMark) PS: 点击“ 阅读原文 ”,可以下载所有源码和模型 ,记得给star哦! 教程目录 测试环境 引言 Facemark API Facemark训练好的模型 利用OpenCV代码进行实时人脸关键点检测 步骤 代码 实验结果 Reference 测试环境 Windows10 Visual Studio 2013 OpenCV3.4.1 引言 人脸一般是有68个关键点,常用的人脸开源库有Dlib,还有很多深度学习的方法。 本教程仅利用OpenCV,不依赖任何其它第三方库来实现人脸关键点检测,这一特性是之前没有的。因为OpenCV自带的samples中只有常见的人脸检测、眼睛检测和眼镜检测等(方法是harr+cascade或lbp+cascade)。 本教程主要参考Facemark : Facial Landmark Detection using OpenCV[1] 截止到2018-03-20,OpenCV3.4可支持三种人脸关键点检测,但目前只能找到一种已训练好的模型

机器学习 | 一个基于机器学习的简单小实践:波斯顿房价预测分析

我的未来我决定 提交于 2020-12-06 12:24:24
本 文采用Kaggle上面的Boston HousePrice数据集展示了如何建立机器学习模型的通常过程 ,包括以下几个阶段: 数据获取 数据清洗 探索性数据分析 特征工程 模型建立 模型集成 标签变量(房价) 采取了对数转换,使其符合正太分布,最后从12个备选模型中选出预测效果最好的6个模型Lasso,Ridge,SVR,KernelRidge,ElasticNet,BayesianRidge分别进行加权平均集成和Stacking集成,最后发现Stacking集成效果更好,创新之处在于将Stacking集成后的数据加入原训练集中再次训练Stacking集成模型,使得模型性能再次得到改善,作为最后的预测模型,预测结果提交kaggle上后表现不错。另外受限于训练时间,超参数搜索空间小,有待改善。 数据获取 Kaggle官网提供了大量的机器学习数据集,本文从其中选择了Boston HousePrice数据集,下载地址为https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data,下载后的数据集包括train.csv,test.csv,data_description.txt,sample_submission.csv四个文件,顾名思义train.csv为训练数据集,用于训练模型,test

多模态机器学习,在线教育退课预测新进展!

别说谁变了你拦得住时间么 提交于 2020-12-06 03:09:05
点击上方 “ 小白学视觉 ”,选择加" 星标 "或“ 置顶 ” 重磅干货,第一时间送达 在线教育场景下的学生退课行为预测,一直是机器学习(ML)与教育(EDU)交叉领域内较为火热的研究课题。 近年间,针对该方向的研究对象大多集中为大规模开放性在线课程(Massive Open Online Course, MOOC)的学生,通过收集 MOOC 平台上学生近期平台登录记录与相关网页埋点反馈数据,研究人员制作相关特征向量并结合机器学习模型算法,如Simple Logistic Regression、Gradient BoostingDecision Tree、Iterative Logistic Regression 等,对存在退课高风险的学生进行预测。 不同于针对MOOC平台学生的预测,当前研究领域对 K12 在线教育平台的学生退课预测还处于初期探索阶段。除此之外,在线 K12 教育平台的数据类型与 MOOC 平台数据相比存在更多模态,例如 K12 教育平台的学生在课前课后与平台顾问直接会产生沟通记录、课程进行过程中也会有相应的音视频记录等。因此,先前关于 MOOC平台的退课预测研究的方法与结论很难直接用于 K12 在线教育场景。 针对这些问题与特点,在2019年初,我们使用某K12在线教育1对1平台2018年秋冬季学期的学生历史行为数据

How to enforce monotonicity for (regression) model outputs in Keras?

半世苍凉 提交于 2020-12-06 02:40:29
问题 I am currently working on a problem where I provide a neural network with an input variable a , and another input x which is a monotonically increasing sequence of N numbers. So my network would basically looks something like this: a_input = Input(shape=[1], name='a') x_input = Input(shape=[N], name='x') nn = concatenate([a_input, x_input]) nn = Dense(100, activation='relu')(nn) nn = Dense(N, activation='relu')(nn) model = Model(inputs=[a_input, x_input], outputs=[nn]) model.compile(loss=

监督学习模型(线性回归,非线性回归,逻辑回归,SVM,决策树,岭回归,Losso回归)

老子叫甜甜 提交于 2020-12-05 06:49:02
一.数据产生 1 from sklearn.datasets import make_classification, make_blobs 2 from matplotlib.colors import ListedColormap 3 from sklearn.datasets import load_breast_cancer 4 from adspy_shared_utilities import load_crime_dataset 5 6 cmap_bold = ListedColormap([ ' #FFFF00 ' , ' #00FF00 ' , ' #0000FF ' , ' #000000 ' ]) 7 8 # make_regression:随机产生回归模型的数据 9 # 参数:n_samples : 数据个数 10 # n_features:数据中变量个数 11 # n_informative:有关变量个数 12 # bias:线性模型中的偏差项 13 # noise:高斯分布的标准差 14 # random_state:随机数的种子生成器 15 16 # 简单(一个参数)的回归数据 17 from sklearn.datasets import make_regression 18 plt.figure() 19 plt.title( ' Sample

Pandas - Rolling slope calculation

◇◆丶佛笑我妖孽 提交于 2020-12-05 03:48:11
问题 How to calculate slope of each columns' rolling(window=60) value, stepped by 5? I'd like to calculate every 5 minutes' value, and I don't need every record's results. Here's sample dataframe and results: df Time A ... N 2016-01-01 00:00 1.2 ... 4.2 2016-01-01 00:01 1.2 ... 4.0 2016-01-01 00:02 1.2 ... 4.5 2016-01-01 00:03 1.5 ... 4.2 2016-01-01 00:04 1.1 ... 4.6 2016-01-01 00:05 1.6 ... 4.1 2016-01-01 00:06 1.7 ... 4.3 2016-01-01 00:07 1.8 ... 4.5 2016-01-01 00:08 1.1 ... 4.1 2016-01-01 00:09