regression

Why factor is not included in first differences model?

北战南征 提交于 2021-01-07 01:24:26
问题 Let's consider data following: library(plm) data("EmplUK", package="plm") df1<-EmplUK df1 <- cbind(df1,"Trend" = as.numeric(as.factor(unlist(df1[, 2])))) > head(df1) firm year sector emp wage capital output Trend 1 1 1977 7 5.041 13.1516 0.5894 95.7072 2 2 1 1978 7 5.600 12.3018 0.6318 97.3569 3 3 1 1979 7 5.015 12.8395 0.6771 99.6083 4 4 1 1980 7 4.715 13.8039 0.6171 100.5501 5 5 1 1981 7 4.093 14.2897 0.5076 99.5581 6 6 1 1982 7 3.166 14.8681 0.4229 98.6151 7 I want to perform first

How to update to the developer version of statsmodels using Conda?

泪湿孤枕 提交于 2021-01-03 03:43:14
问题 I am currently trying to update my statsmodels package in Conda to the developer version statsmodels v0.11.0dev0. As I am relatively new to Python, I am struggling heavily to understand different threads on how to update to the developer version. On https://www.statsmodels.org/dev/install.html a short hint on how to install the developer version is given, nevertheless I cannot follow. I have tried the pip install -e and python setup.py develop. In order to specifically update the statsmodel

How to update to the developer version of statsmodels using Conda?

青春壹個敷衍的年華 提交于 2021-01-03 03:40:28
问题 I am currently trying to update my statsmodels package in Conda to the developer version statsmodels v0.11.0dev0. As I am relatively new to Python, I am struggling heavily to understand different threads on how to update to the developer version. On https://www.statsmodels.org/dev/install.html a short hint on how to install the developer version is given, nevertheless I cannot follow. I have tried the pip install -e and python setup.py develop. In order to specifically update the statsmodel

Python —— sklearn.feature_selection模块

六眼飞鱼酱① 提交于 2021-01-02 16:57:11
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature extraction。 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要。剔除那些不重要的指标。 sklearn.feature_selection模块中主要有以下几个方法: SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量。而他们通过什么指标来给变量排名呢?这需要二外的指定。 对于regression问题,可以使用f_regression指标。对于classification问题,可以使用chi2或者f_classif变量。 回归: f_regression:相关系数,计算每个变量与目标变量的相关系数,然后计算出F值和P值; 分类 : chi2:卡方检验; f_classif:方差分析,计算方差分析(ANOVA)的F值 (组间均方 / 组内均方); 使用的例子: 1 from sklearn.feature_selection import SelectPercentile, f_classif 2

How to plot regression transformed back on original scale with colored confidence interval bands?

旧城冷巷雨未停 提交于 2021-01-01 04:38:24
问题 I would like to plot the line and the 95% confidence interval from a linear model where the response has been logit transformed back on the original scale of the data. So the result should be a curved line including the confidence intervals on the original scale, where it would be a straight line on the logit transformed scale. See code: # Data dat <- data.frame(c(45,75,14,45,45,55,65,15,3,85), c(.37, .45, .24, .16, .46, .89, .16, .24, .23, .49)) colnames(dat) <- c("age", "bil.") # Logit

How to plot regression transformed back on original scale with colored confidence interval bands?

此生再无相见时 提交于 2021-01-01 04:38:06
问题 I would like to plot the line and the 95% confidence interval from a linear model where the response has been logit transformed back on the original scale of the data. So the result should be a curved line including the confidence intervals on the original scale, where it would be a straight line on the logit transformed scale. See code: # Data dat <- data.frame(c(45,75,14,45,45,55,65,15,3,85), c(.37, .45, .24, .16, .46, .89, .16, .24, .23, .49)) colnames(dat) <- c("age", "bil.") # Logit

How to test for spatial non-stationarity in R to determine if local regression model is needed?

本秂侑毒 提交于 2021-01-01 04:18:37
问题 I have a dataset for which I implement a regression model and from which I assume that the coefficients vary locally. If a spatial non-stationarity is given, it makes sense to run a local regression model, in my case a Geographically Weighted Regression (GWR). To find out, if there is a spatial non-stationarity I am aware of the Koenker test which can be calculated with an Ordinary Least Square (OLS) regression model in any GIS software. But for this project I am working with R and I need to

GridSearch over MultiOutputRegressor?

 ̄綄美尐妖づ 提交于 2020-12-27 08:54:59
问题 Let's consider a multivariate regression problem (2 response variables: Latitude and Longitude). Currently, a few machine learning model implementations like Support Vector Regression sklearn.svm.SVR do not currently provide naive support of multivariate regression. For this reason, sklearn.multioutput.MultiOutputRegressor can be used. Example: from sklearn.multioutput import MultiOutputRegressor svr_multi = MultiOutputRegressor(SVR(),n_jobs=-1) #Fit the algorithm on the data svr_multi.fit(X

聊一聊软件测试的方法

淺唱寂寞╮ 提交于 2020-12-26 19:52:49
一、软件测试的目的 发现缺陷 尽早和尽量多的发现被测对象中的缺陷,应该是测试人员测试过程中最常提起的一个测试目标,也是所谓测试价值的一个的重要体现。发现缺陷的目的是推动开发人员定位和修复问题,测试人员通过再测试和回归测试,确保开发人员已修复缺陷,并没有影响原来正常的区域,从而提高产品质量。开发生命周期的每个阶段,都应该有测试的参与,并尽量多的发现本阶段的缺陷,从而大大提高本阶段的缺陷阶段遏制能力,从而提高测试效率、降低成本和提高质量。 推荐一个软件测试技术交流群:1079636098 学习路线以及对应教程免费领取 二、软件测试的两大分类 1、白盒测试 白盒测试是把测试对象看作一个打开的盒子。利用白盒测试法进行动态测试时,需要测试软件产品的内部结构和处理过程,不需测试软件产品的功能。 白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路劲测试。其中逻辑覆盖包括语句覆盖、判断覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。 白盒测试是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。 2、黑盒测试 黑盒测试是根据软件的规格对软件进行的测试,这类测试不考虑软件内部的运作原理

spark-红酒-白酒评估

吃可爱长大的小学妹 提交于 2020-12-25 21:35:24
Storm ------------------ 实时计算,延迟很低。 吞吐量小。 tuple() Spark Streaming ------------------ DStream,离散流计算。 相当于一序列RDD。 按照时间片划分RDD。 DStream分区 = RDD的分区。 动态数据。 StreamingContext( , Seconds( 2 )) windows话操作,batch的扩展。 吞吐量大。 socketTextStream() // Socket // 分区200ms kafka流 // kafka分区 == rdd一个分区。 LocationStrategy ------------------ 位置策略,控制主题分区在哪个节点消费。 PreferBroker // 首选kafka服务器 PreferConsistent // 首选均衡处理 PreferFixed // 首选固定位置 ConsumerStrategy ----------------- 控制消费者对kafka消息的消费范围界定。 Assign // 指定,控制到主题下的分区. Subscribe // 订阅主题集合,控制不到主题下的某个分区。 SubscribePattern // 正则消费,对Subscribe的增强,支持正则表达式. 消费语义模型 ---------------- 1