pytorch

Install PyTorch from requirements.txt

百般思念 提交于 2021-02-04 15:24:50
问题 Torch documentation says use pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html to install the latest version of PyTorch. This works when I do it manually but when I add it to req.txt and do pip install -r req.txt , it fails and says ERROR: No matching distribution . Edit: adding the whole line from req.txt and error here. torch==1.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html torchvision==0.5.0+cpu -f https://download

print exact value of tensor(floating point precision) with pytorch

怎甘沉沦 提交于 2021-02-04 14:55:33
问题 I'm trying to print torch.FloatTensor like a = torch.FloatTensor(5,5) print(a) this way I can got a value like 0.0000e+00 0.0000e+00 3.2286e-41 9.4448e+21 4.3346e-38 1.2412e-40 1.2313e+00 1.6751e-37 3.1138e-40 9.4460e+21 2.6801e-36 3.5873e-41 9.4463e+21 4.9653e-35 3.9963e-40 9.4454e+21 2.6801e-36 1.2771e-40 9.4460e+21 1.7153e-34 7.7056e-40 9.0090e+15 4.1877e-38 2.9775e-41 1.5695e-43 But I want to get more accurate value, like 10 decimal point 0.1234567891+01 in python, I could got it print('{

When should I use nn.ModuleList and when should I use nn.Sequential?

大城市里の小女人 提交于 2021-02-04 13:16:26
问题 I am new to Pytorch and one thing that I don't quite understand is the usage of nn.ModuleList and nn.Sequential . Can I know when I should use one over the other? Thanks. 回答1: nn.ModuleList does not have a forward method, but nn.Sequential does have one. So you can wrap several modules in nn.Sequential and run it on the input. nn.ModuleList is just a Python list (though it's useful since the parameters can be discovered and trained via an optimizer). While nn.Sequential is a module that

Papers With Code新增数据集检索功能:3000+经典数据集,具备多种过滤功能

|▌冷眼眸甩不掉的悲伤 提交于 2021-02-04 08:28:16
机器之心报道 作者:陈萍 转载自: 机器之心 原文链接: Papers With Code新增数据集检索功能:3000+经典数据集,具备多种过滤功能 ​ mp.weixin.qq.com Papers with Code 现在已经集成了 3044 个机器学习数据集,点点鼠标就能检索需要的数据集。 在机器学习中,数据集占据了重要的一部分。研究人员除了需要开发先进的算法外,其实数据集的建立才是最基础也是最重要的部分。在过往的研究中,机器学习从业者也建立了许多可用的数据集。 在哪里可以找到比较好的数据集呢? 近日,查找论文对应开源代码的神器 Papers with Code 官网发布,Datasets 已经实现了 3044 个机器学习数据集的汇总,并且按照不同的类型进行归类,还具有过滤功能,值得一看。 我们现在正在索引 3000 + 来自机器学习的数据集。使用者可以按照任务分类和模式进行数据集查找,还可以按照时间比较数据集的使用情况、浏览基准等要素进行查找。 网站地址: https://www. paperswithcode.com/data sets 覆盖范围众多的数据集 在这 3044 个机器学习数据集里,不乏我们常用的经典数据集,例如,ImageNet、COCO、CIFAR-10、MNIST 等。 快速检索 如果你想搜索指定的数据集,该网站也具备检索功能,例如从事计算机视觉的研究者

Deriving the structure of a pytorch network

我是研究僧i 提交于 2021-02-04 08:03:10
问题 For my use case, I require to be able to take a pytorch module and interpret the sequence of layers in the module so that I can create a “connection” between the layers in some file format. Now let’s say I have a simple module as below class mymodel(nn.Module): def __init__(self, input_channels): super(mymodel, self).__init__() self.fc = nn.Linear(input_channels, input_channels) def forward(self, x): out = self.fc(x) out += x return out if __name__ == "__main__": net = mymodel(5) for mod in

Deriving the structure of a pytorch network

橙三吉。 提交于 2021-02-04 08:03:03
问题 For my use case, I require to be able to take a pytorch module and interpret the sequence of layers in the module so that I can create a “connection” between the layers in some file format. Now let’s say I have a simple module as below class mymodel(nn.Module): def __init__(self, input_channels): super(mymodel, self).__init__() self.fc = nn.Linear(input_channels, input_channels) def forward(self, x): out = self.fc(x) out += x return out if __name__ == "__main__": net = mymodel(5) for mod in

计算机视觉中的注意力机制

给你一囗甜甜゛ 提交于 2021-02-02 21:57:10
点击上方 “ 机器学习与生成对抗网络 ”,关注"星标" 获取有趣、好玩的前沿干货! 作者:HUST小菜鸡 https://zhuanlan.zhihu.com/p/146130215 文仅交流,未经允许不得转载 之前在看DETR这篇论文中的self_attention,然后结合之前实验室组会经常提起的注意力机制,所以本周时间对注意力机制进行了相关的梳理,以及相关的源码阅读了解其实现的机制 一、注意力机制(attention mechanism) attention机制可以它认为是一种资源分配的机制,可以理解为对于原本平均分配的资源根据attention对象的重要程度重新分配资源,重要的单位就多分一点,不重要或者不好的单位就少分一点,在深度神经网络的结构设计中,attention所要分配的资源基本上就是权重了 视觉注意力分为几种,核心思想是基于原有的数据找到其之间的关联性,然后突出其某些重要特征,有通道注意力,像素注意力,多阶注意力等,也有把NLP中的自注意力引入。 二、自注意力(self-attention) 参考文献:Attention is All you Need 参考资料:https://zhuanlan.zhihu.com/p/48508221 GitHub:https://github.com/huggingface/transformers

深度学习框架PyTorch的技巧总结

邮差的信 提交于 2021-02-02 10:44:02
1.在训练模型时指定GPU的编号 设置当前使用的GPU设备仅为0号设备,设备名称为"/gpu:0", os.environ["CUDA_VISIBLE_DEVICES"]="0" ; 设置当前使用的GPU设备为0,1两个设备,名称依次为"/gpu:0","/gpu:1", os.environ["CUDA_VISIBLE_DEVICES"]="0,1" ;根据顺序优先表示使用0号设备,然后使用1号设备; 同样,也可以在训练脚本外面指定, CUDA_VISIBLE_DEVICES=0,1 python train.py ,注意,如果此时使用的是8卡中的6和7, CUDA_VISIBLE_DEVICES=6,7 python train.py ,但是在模型并行化的时候,仍然指定0和1, model=nn.DataParallel(mode, devices=[0,1] ; 在这里,需要注意的是,指定GPU的命令需要放在和网络模型操作的最前面; 2.查看模型每层的输如输出详情 1.需要安装torchsummary或者torchsummaryX(pip install torchsummary); 2.使用示例如下: from torchvision import models vgg16 = models . vgg16 ( ) vgg16 = vgg16 . cuda ( ) # 1

How to customize pytorch data

本秂侑毒 提交于 2021-02-02 09:32:35
问题 I am trying to make a customized Dataloader using pytorch. I've seen some codes like (omitted the class sorry.) def __init__(self, data_root, transform=None, training=True, return_id=False): super().__init__() self.mode = 'train' if training else 'test' self.data_root = Path(data_root) csv_fname = 'train.csv' if training else 'sample_submission.csv' self.csv_file = pd.read_csv(self.data_root / csv_fname) self.transform = transform self.return_id = return_id def __getitem__(): """ TODO """ def

RuntimeError: size mismatch, m1: [4 x 3136], m2: [64 x 5] at c:\a\w\1\s\tmp_conda_3.7_1

蹲街弑〆低调 提交于 2021-02-02 09:12:45
问题 I used python 3 and when i insert transform random crop size 224 it gives miss match error. here my code what did i wrong ? 回答1: Your code makes variations on resnet: you changed the number of channels, the number of bottlenecks at each "level", and you removed a "level" entirely. As a result, the dimension of the feature map you have at the end of layer3 is not 64: you have a larger spatial dimension than you anticipated by the nn.AvgPool2d(8). The error message you got actually tells you