psi

First Order Methods in Optimization Ch9. Mirror Descent

浪尽此生 提交于 2020-02-23 09:44:07
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

陌路散爱 提交于 2020-02-23 07:51:29
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

怎甘沉沦 提交于 2020-02-22 14:17:52
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

在GoogleTalk上与QQ、MSN好友聊天

江枫思渺然 提交于 2020-02-22 12:50:40
jabber通信协议,这就使得我们不光可以在jabber客户端上登录使用Google Talk,而且可以利用这一点将QQ、MSN、雅虎通、icq全部整全到Google Talk里面,从此以后你就不用同时在电脑上开N多IM,而只用开Google Talk就全部搞定。   下面介绍怎样利用jabber客户端Psi将你的MSN,雅虎通,aim/icq,QQ整合到Google Talk中,此设置过程要用到Psi,之后就不用开Psi了,只需开Google Talk就能和MSN好友聊了。   首先当然是安装好Psi,Psi的官方地址为: http://psi.affinix.com/download 。安装完成后,可以参照google talk官方帮助文件里的设置(已经够详细了)将你的Google Talk帐号设置成缺省登录帐号,然后登录你的帐号状态为"online"。   点击Psi左下角的系统菜单中的"Service Discovery"寻找jabber服务器,在所弹出窗口的"Address"栏填上jabber服务器地址如jabbernet.dk,后面的 "Node"可以不用选,然后点"Browse",下面就会显示支持的IM的jabber服务器地址。      jabber服务器参考地址:jabbernet.dk   jaim.at   bgmn.net   freelinq.com  

First Order Methods in Optimization Ch9. Mirror Descent

梦想的初衷 提交于 2020-02-22 12:47:37
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

耗尽温柔 提交于 2020-02-22 11:50:11
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

时光怂恿深爱的人放手 提交于 2020-02-22 11:15:53
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

烂漫一生 提交于 2020-02-22 08:34:26
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 PSGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv) 问题

First Order Methods in Optimization Ch9. Mirror Descent

十年热恋 提交于 2020-02-21 08:59:56
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 PSGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv) 问题

First Order Methods in Optimization Ch9. Mirror Descent

眉间皱痕 提交于 2020-02-21 08:39:50
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 PSGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv) 问题