psi

First Order Methods in Optimization Ch9. Mirror Descent

帅比萌擦擦* 提交于 2020-02-25 07:37:49
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

ε祈祈猫儿з 提交于 2020-02-25 07:04:28
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

让人想犯罪 __ 提交于 2020-02-25 06:28:30
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

百般思念 提交于 2020-02-25 05:15:14
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

主宰稳场 提交于 2020-02-25 02:17:53
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

情到浓时终转凉″ 提交于 2020-02-24 13:06:17
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

纵然是瞬间 提交于 2020-02-24 11:34:19
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

删除回忆录丶 提交于 2020-02-24 09:43:01
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

First Order Methods in Optimization Ch9. Mirror Descent

戏子无情 提交于 2020-02-24 09:06:25
第九章: 镜像下降法 文章目录 第九章: 镜像下降法 1. 从投影次梯度法到镜像下降法 2. 收敛性分析 2.1 分析工具 2.2 固定迭代数目的步长选取准则 2.3 变步长准则 3. 求解组合模型的镜像下降法——镜像-C算法 本章讨论 镜像下降法 (mirror descent method, MDM)及其变体. 镜像下降实际上是 Proj-SGM在非欧情形下的推广 . 因此本章的讨论不再限制在欧式空间中. 1. 从投影次梯度法到镜像下降法 考虑优化问题 ( P ) min ⁡ { f ( x ) : x ∈ C } . (\mathrm{P})\quad\min\{f(\mathbf{x}):\mathbf{x}\in C\}. ( P ) min { f ( x ) : x ∈ C } . 我们对其做如下假设: 假设条件1 (i) f : E → ( − ∞ , ∞ ] f:\mathbb{E}\to(-\infty,\infty] f : E → ( − ∞ , ∞ ] 是正常闭凸函数; (ii) C ⊂ E C\subset\mathbb{E} C ⊂ E 是非空闭凸集; (iii) C ⊂ i n t ( d o m ( f ) ) C\subset\mathrm{int}(\mathrm{dom}(f)) C ⊂ i n t ( d o m ( f ) ) ; (iv

三角不等式

可紊 提交于 2020-02-24 00:54:04
Let $n$ be a natural number and let $0\lt x\lt{\pi}$. Then, here are my questions. Question 1: Is the following true? $$\sum_{k=1}^{n}\frac{\cos(kx)}{k}\gt -1$$ Question 2: Is the following true? $$\sum_{k=1}^{n}\frac{\sin(kx)}{k}\gt0$$ This is a possible hint for solution; perhaps someone can finish it along these lines (it won't fit as a comment). We have $$\sin x+\dfrac{\sin 2x}{2}+\dfrac{\sin 3x}{3}+\ldots+ \dfrac{\sin nx}{n}=\sum_{k=1}^n\int_0^x\cos kt\,dt,$$ $$2\sum_{k=1}^n\cos kt=\sin((n+1/2)t)/\sin(t/2)-1$$ (by taking the real part of $\sum_{k=1}^n e^{ikt}$) so we want to show $$\int_0