平滑滤波

高斯模糊原理,算法

落爺英雄遲暮 提交于 2019-12-04 01:05:11
作者:Hohohong 链接:https://www.jianshu.com/p/8d2d93c4229b 來源:简书 图像卷积滤波与高斯模糊 1.1 图像卷积滤波 对于滤波来说,它可以说是图像处理最基本的方法,可以产生很多不同的效果。以下图来说 图中矩阵分别为二维原图像素矩阵,二维的图像滤波矩阵(也叫做卷积核,下面讲到滤波器和卷积核都是同个概念),以及最后滤波后的新像素图。对于原图像的每一个像素点,计算它的领域像素和滤波器矩阵的对应元素的成绩,然后加起来,作为当前中心像素位置的值,这样就完成了滤波的过程了。 可以看到,一个原图像通过一定的卷积核处理后就可以变换为另一个图像了。而对于滤波器来说,也是有一定的规则要求的。 ① 滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。 ② 滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。 ③ 如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。 ④ 对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。 1.2 卷积核一些用法

h.264 去块滤波

拥有回忆 提交于 2019-12-03 12:15:46
本文转自: h.264 去块滤波 原作者: https://www.cnblogs.com/TaigaCon h.264 去块滤波 块效应及其产生原因 我们在观看视频的时候,在运动剧烈的场景常能观察到图像出现小方块,小方块在边界处呈现不连续的效果(如下图),这种现象被称为块效应(blocking artifact)。 首先我们需要搞清楚块效应产生的原因。h.264在编码过程中对像素残差进行了DCT变换,变换后得到的DCT系数是与每个像素都相关的,这些系数代表了被变换数据的基础色调与细节。h.264在DCT变换后对DCT系数进行了量化,量化能有效去除相邻像素间的空间冗余,也就是说会抹去元素数据的部分细节。比较理想的情况是量化抹去人眼无法识别的细节部分,但是在低码率的情况下就会导致原始数据的细节丢失过多。而且,DCT变换时基于块的,即将8x8或者4x4的像素残差进行变换后得到8x8或者4x4DCT系数,此时如果进行了低码率的量化,就会使得相邻两个块的相关性变差,从而出现块效应。 h.264的运动补偿加剧了由变换量化导致的块效应。由于运动补偿块的匹配不可能绝对准确,各个块的残差大小程度存在差异,尤其是当相邻两个块所用参考帧不同、运动矢量或参考块的差距过大时,块边界上产生的数据不连续就更加明显。 块效应主要有两种形式:一种是由于DCT高频系数被量化为0,使得强边缘在跨边界处出现锯齿状

h.264 去块滤波

匿名 (未验证) 提交于 2019-12-03 00:17:01
原作者: https://www.cnblogs.com/TaigaCon h.264 去块滤波 块效应及其产生原因 我们在观看视频的时候,在运动剧烈的场景常能观察到图像出现小方块,小方块在边界处呈现不连续的效果(如下图),这种现象被称为块效应(blocking artifact)。 首先我们需要搞清楚块效应产生的原因。h.264在编码过程中对像素残差进行了DCT变换,变换后得到的DCT系数是与每个像素都相关的,这些系数代表了被变换数据的基础色调与细节。h.264在DCT变换后对DCT系数进行了量化,量化能有效去除相邻像素间的空间冗余,也就是说会抹去元素数据的部分细节。比较理想的情况是量化抹去人眼无法识别的细节部分,但是在低码率的情况下就会导致原始数据的细节丢失过多。而且,DCT变换时基于块的,即将8x8或者4x4的像素残差进行变换后得到8x8或者4x4DCT系数,此时如果进行了低码率的量化,就会使得相邻两个块的相关性变差,从而出现块效应。 h.264的运动补偿加剧了由变换量化导致的块效应。由于运动补偿块的匹配不可能绝对准确,各个块的残差大小程度存在差异,尤其是当相邻两个块所用参考帧不同、运动矢量或参考块的差距过大时,块边界上产生的数据不连续就更加明显。 块效应主要有两种形式:一种是由于DCT高频系数被量化为0,使得强边缘在跨边界处出现锯齿状,称为梯形噪声;另一种经常出现在平坦区域

图像增强之普通平滑、高斯平滑、laplacian、sobelprewitt锐化

匿名 (未验证) 提交于 2019-12-02 23:45:01
1、 简单平滑-邻域平均法 图像简单平滑是指通过邻域简单平均对图像进行平滑处理的方法,用这种方法在一定程度上消除原始图像中的噪声、降低原始图像对比度的作用。 它利用卷积运算对图像邻域的像素灰度进行平均,从而达到减小图像中噪声的影响、降低图像对比度的目的。 2、 高斯平滑 高斯平滑也是邻域平均的思想对图像进行平滑的一种方法,高斯平滑与简单平滑不同,在高斯平滑中,不同位置的像素被赋予了不同的权重。 下图的所示的3*3和5*5领域的高斯模板。 模板越靠近邻域中心位置,其权值越高。在图像细节进行模糊时,可以更多的保留图像总体的灰度分布特征。下图是常用的四个模板: 3、 中值滤波 在使用邻域平均法去噪的同时也使得边界变得模糊。而中值滤波是非线性的图像处理方法,在去噪的同时可以兼顾到边界信息的保留。 选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把窗口中所含的像素点按灰度级的升或降序排列,取位于中间的灰度值来代替该点的灰度值。 常用的窗口还有方形、十字形、圆形和环形。不同形状的窗口产生不同的滤波效果,方形和圆形窗口适合外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。 4、 边界保持类滤波 均值 替换掉原来的值 中值 灰度来替代,上图中2,3,3中选择3即可。

emgucv.引导滤波

ぐ巨炮叔叔 提交于 2019-12-01 10:01:31
1、度搜索"emgucv 引导滤波"  【使用EmguCV进行图像处理】导向滤波 - fzzc12138的博客 - CSDN博客.html( https://blog.csdn.net/fzzc12138/article/details/87181577 )   ZC:C#的实现  【拜小白opencv】33-平滑处理6——引导滤波_导向滤波(Guided Filter) - 拜小白的成长之路,告别小白 - CSDN博客.html( https://blog.csdn.net/sinat_36264666/article/details/77990790 )   ZC:这是 上面那篇文章参考的文章,是C++实现 2、 3、 4、 5、 来源: https://www.cnblogs.com/csskill/p/11677743.html

python skimage图像处理(二)

試著忘記壹切 提交于 2019-12-01 05:00:28
python skimage图像处理(二) This blog is from: https://www.jianshu.com/p/66e6261f0279 图像简单滤波 对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声;另一种是微分算子,可以用来检测边缘和特征提取。 skimage库中通过filters模块进行滤波操作。 1、sobel算子 sobel算子可用来检测边缘 函数格式为: skimage.filters.sobel(image, mask=None) from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() edges = filters.sobel(img) plt.imshow(edges,plt.cm.gray) 2、roberts算子 roberts算子和sobel算子一样,用于检测边缘 调用格式也是一样的: edges = filters.roberts(img) 3、scharr算子 功能同sobel,调用格式: edges = filters.scharr(img) 4、prewitt算子 功能同sobel,调用格式: edges = filters.prewitt(img) 5、canny算子 canny算子也是用于提取边缘特征

Matlab图像处理——中值滤波medfilt2问题解决

泪湿孤枕 提交于 2019-11-30 16:43:49
本文链接:https://blog.csdn.net/Pxzly1117/article/details/79201772 程序: I=imread('13.jpg');%读入图像 imshow(I); h=imnoise(I,'salt & pepper');%为I图片叠加椒盐噪声噪声 figure;imshow(h); w=[1 2 1;2 4 2;1 2 1]/16;%高斯模板 I5=imfilter(h,w,'corr','replicate');%高斯平滑 figure;imshow(I5); w=[1 1 1;1 1 1;1 1 1]/9;%平均模板 I7=imfilter(h,w,'corr','replicate');%平均平滑 figure;imshow(I7); I9=medfilt2(h,[3,3]);%中值滤波 figure;imshow(I9); 出现错误: 问题: 中值滤波medfilt2,用法是B = medfilt2(A, [m n]),输入图像A应是二维矩阵,程序中输入图像h是由imread得到的I加上噪声得到的,而imread读到的图像I通常是3维RGB图,是三维矩阵,因此才出现问题,显示A应该为二维的。 解决方法: 先用rgb2gray(I)将h先将I图像转换为灰度矩阵图像,再用medfilt2。 程序后段改为: j=rgb2gray(I);

几种常见空间滤波器MATLAB实现

孤者浪人 提交于 2019-11-30 16:32:29
本文链接:https://blog.csdn.net/LYduring/article/details/80443573 一、目的 实现算术均值滤波器、几何均值滤波器、中值滤波器、修正的阿尔法均值滤波器、自适应中值滤波器,并比较不同滤波器的降噪结果。 二、代码 代码的思路如下: (1)先对原始的电路图先后进行加高斯噪声和椒盐噪声;之后设置滤波器的模板大小为5*5,分别对被噪声污染的图像进行算术均值、几何均值、中值、修正的阿尔法滤波,并输出图像,方便结果比较。 (2)为了比较中值滤波器和自适应中值滤波器的滤波结果,先对原始电路图添加椒盐噪声;接着对噪声图像进行模板大小为5*5的中值滤波;最后对噪声图像进行最大模板为5*5的自适应中值滤波,分别输出滤波后的图像,比较结果。 代码具体实现如下: %******************************************************% %目的:比较几种不同均值滤波器和自适应中值滤波器的去噪声效果 %日期:2018.5.18 %******************************************************% %读入图像 img = imread('img.tif'); figure; subplot(1,3,1); imshow(img); title('原始图像');

ceshi

荒凉一梦 提交于 2019-11-30 12:08:49
\documentclass[12pt]{article}%{ctexart} \usepackage{ctex} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{changepage} \usepackage{graphicx} \usepackage{url} %\usepackage{setspace} \title{一周进展报告} \author{杨拓} \date{\today} \setlength{\parskip}{0.5\baselineskip} \begin{document} \maketitle %生成文档目录 \tableofcontents %构建各章节的一级小结 \pagebreak \section{SIFT} \subsection{SIFT简介\cite{2}} \textbf{尺度不变特征转换(Scale-invariant feature transform或SIFT)},由David Lowe于1999年首次提出,作用是将一幅图像映射为一个局部特征向量集;特征向量具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定的不变性。 \begin{adjustwidth}{1cm}{1cm} SIFT算法的特点有:~\\ 1

SIFT

我是研究僧i 提交于 2019-11-30 12:07:58
\section{SIFT} \subsection{SIFT简介\cite{2}} \textbf{尺度不变特征转换(Scale-invariant feature transform或SIFT)},由David Lowe于1999年首次提出,作用是将一幅图像映射为一个局部特征向量集;特征向量具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定的不变性。 \begin{adjustwidth}{1cm}{1cm} SIFT算法的特点有:~\\ 1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;\\ 2.独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;\\ 3.多量性,即使少数的几个物体也可以产生大量的特征向量;\\ 4.高速性,经优化的匹配算法甚至可以达到实时的要求;\\ 5.可扩展性,可以很方便的与其他形式的特征向量进行联合。 \end{adjustwidth} \begin{adjustwidth}{1cm}{1cm} SIFT算法的基本步骤为:~\\ 1.高斯差分(DoG)滤波;\\ 2.尺度空间的极值检测和关键点位置确定;\\ 3.关键点方向确定;\\ 4.构建关键点特征描述符; \end{adjustwidth}