pcb

PCB板中的EMC设计指南和整改方法

笑着哭i 提交于 2019-12-06 07:01:29
本文来自:中国电磁兼容网 1. 一般规则 1.1 PCB 板上预划分数字、模拟、DAA 信号 布线区域。 1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。 : k6 s6 Y7 Z4 V) |2 v9 H) J0 q+ v. p5 A 1.3 高速数字信号走线尽量短。 1.4 敏感模拟信号走线尽量短。 1.5 合理分配 电源 和地。 1 g1 /+ P& _1 u5 y 1.6 DGND、AGND、实地分开。 1.7 电源及临界信号走线使用宽线。 1.8 数字 电路 放置於并行总线/串行DTE接口附近,DAA 电路 放置於电话线接口附近。 ( A3 x1 J- M3 C; c6 Y 2. 元器件放置 # h& r3 {/ @( V- Y& j; t 2.1 在 系统 电路 原理 图中: l& u t% j4 p8 R8 u# @( W! B3 G a) 划分数字、模拟、DAA电路及其相关电路; 8 G9 G! O% a6 ~2 y2 U% _2 p. p b) 在各个电路中划分数字、模拟、混合数字/模拟元器件; c) 注意各IC芯片电源和信号引脚的定位。 ' O2 R) u8 P6 n( e5 O) y 2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。 6 s9 Q

PCB设计中的EMC

会有一股神秘感。 提交于 2019-12-06 06:50:41
电磁兼容性是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。 1. 选择合理的导线宽度由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。 2. 采用正确的布线策略采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。 为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点: ●尽量减少印制导线的不连续性,例如导线宽度不要突变

PCB的EMC设计

假装没事ソ 提交于 2019-12-06 06:47:57
1、PCB的EMC简单对策 同系统EMC的解决措施一样,PCB的EMC也要针对其三要素(干扰源、耦合途径、敏感装置)对症下药: 降低EMI强度 切断耦合途径 提高自身的抗扰能力 针对PCB的耦合途径之一传导干扰,我们通常采用扩大线间距、滤波等措施; 针对PCB的耦合途径之二辐射干扰,我们通常主要采取控制表层布线,增加屏蔽等手段; 2、单板层设置的一般原则 A.元器件下面(顶层、底层)为地平面,提供器件屏蔽层以及顶层布线提供回流平面; B.所有信号层尽可能与地平面相邻(确保关键信号层与地平面相邻),关键信号不跨分割; C.尽量避免两信号层直接相邻; D.主电源尽可能与其对应地相邻; E.兼顾层压结构对称; 以六层板为例,以下有3种方案: A.S1 G1 S2 S3 P1 S4 B. S1 G1 S2 P1 G2 S3 C. S1 G1 S2 G2 P1 S3 优先考虑方案B,并优先考虑布线层S2,其次是S3、S1; 在成本较高时,可采用方案A,优选布线层S1,S2,其次是S3,S4; 对于局部、少量信号要求较高的场合,方案C比方案A更合适;(为什么?) (注意,在考虑电源、地平面的分割情况下,实际情况因分割等因素可能有所出入) 3、电源、地系统的设计 3.1 滤波设计 3.1.1滤波电路的基本概念 滤波电路是由电感、电容、电阻、铁氧体磁珠和共模线圈等构成的频率选择性网络

PCB叠层设计

倖福魔咒の 提交于 2019-12-06 06:47:09
1.概述 PCB层叠结构设计对产品成本、产品EMC的好坏都有直接的影响。板层的增加,方便了布线,但也增加了成本。设计的时候需要考虑各方面的需求,以达到最佳的平衡。 在完成元器件的预布局后,一般需要对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。 2.层叠选择因素考虑 电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。 (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值。 (3)电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间。这样两个内电层的铜膜可以为高速信号传输提供电磁屏蔽,同时也能有效地将高速信号的辐射限制在两个内电层之间,不对外造成干扰。 (4)避免两个信号层直接相邻。相邻的信号层之间容易引入串扰,从而导致电路功能失效。在两信号层之间加入地平面可以有效地避免串扰。 (5)多个接地的内电层可以有效地降低接地阻抗。例如,A信号层和B信号层采用各自单独的地平面,可以有效地降低共模干扰。 (6)兼顾层结构的对称性。 常见的叠层设计: 2.1.4层板叠层结构

高速数字PCB设计(1)—浅析PCB层叠结构(stackup)设计

倖福魔咒の 提交于 2019-12-06 06:46:58
PCB层叠结构设计往往是原理图转到PCB设计大家考虑的第一步,也是PCB设计中至关重要的一步,板子层叠结构的好坏甚至直接关系到产品成本、产品EMC的好坏。下面就就简单的从PCB层数预估和可生产性两个方面介绍PCB层叠结构的设计。 1. PCB层叠结构预估 PCB层数设计主要可以从以下几个方面考虑(1):管脚最密器件(如BGA等)需要几层信号层扇出所有信号;(2):器件密度;(3):成本;(4):PCB走线阻抗控制和电源平面完整性要求;(5):EMC方面的考虑; (1):管脚最密器件 一般PCB层数估计时,最先考虑管脚最密的元器件(但是在一些高速PCB设计时,有时候要考虑高速器件走线的要求,一般都需要走内层,所以有时候PCB的层数会由有特殊走线要求的器件决定),如BGA封装器件,一般需要把所有的管脚进行扇出,这时需要估算管脚扇出需要的信号层数目N;如果PCB器件密度不是很大,可供走线面积良好,对扇出信号电学特性没有特殊要求,基本可以确定PCB信号层数为N。具体如何扇出可以看芯片相关的Layout建议。 (2):器件密度 设计PCB时,有时候会遇到因为机械结构或者其他特殊要求,PCB板面积较小,器件密度很高的情况。这种情况下,Top Layer和Bottom Layer中可供走线的面积较小,一般情况下需要评估管脚密度进行布线。同时对于高密度板,原理图设计和PCB器件布局对减少PCB层数

PCB设计上如何避免EMC问题

偶尔善良 提交于 2019-12-06 06:46:12
作者:一博科技 最近经常被问到EMC相关的问题,比如怎么设计才能避免EMC的问题,我想经常关注高速先生的同鞋们有机会肯定也会问到这个问题。首先这是一个系统性的问题,不是那么好回答,尤其是对于聚焦在高速信号这个领域而非EMC专长的高速先生们来说,其实也只能回答个大概,实话实说,在EMC领域我们也还在不断的学习中,所以这篇文章也只是基于我们对EMC的一些认识,从PCB设计中如何去尽量的避免问题的发生,其中说得不到位的也请大家批评指正,如果您有自己更好的文章,也欢迎投稿给我们的高速先生。 在文章的开篇就说过,EMC和SI、PI息息相关,很多时候我们会告诉大家,我们没法进行EMC仿真,但我们会从板级来尽量避免一些EMC问题的发生,说白了其实就是尽量保证SI及PI的性能(这是我们的专长),从源头上来避免EMC问题。 首先,关于信号完整性与EMC的关系前面小陈有写过不少的文章阐述了一些道理,今天我们再来简单的总结下,SI关注的过冲、反射及串扰,其实就和EMC有直接的关系。信号由于阻抗匹配不好,会发生各种反射,反射比较大就会有较大的过冲,那么这个过冲的幅值除了对器件的使用寿命有影响外,还会影响到辐射,因为他是辐射的来源,所以在PCB设计上对一些关键信号就需要尽量控制阻抗,做到阻抗匹配,可能的情况下还需要通过一定的外部端接来达到匹配,在拓扑和端接系列里面已经讲过各种端接方法了

良好的EMC性能的PCB布线要点

谁说我不能喝 提交于 2019-12-06 06:45:54
提起PCB布线,许多工程技术人员都知道一个传统的经验:正面横向走线、反面纵向走线,横平竖直,既美观又短捷;还有个传统经验是:只要空间允许,走线越粗越好。可以明确地说,这些经验在注重EMC的今天已经过时。   要使单片机系统有良好的EMC性能,PCB设计十分关键。一个具有良好的EMC性能的PCB,必须按高频电路来设计——这是反传统的。单片机系统按高频电路来设计PCB的理由在于:尽管单片机系统大部分电路的工作频率并不高,但是EMI的频率是高的,EMC测试的模拟干扰频率也是高的[5]。要有效抑制EMI,顺利通过EMC测试,PCB的设计必须考虑高频电路的特点。PCB按高频电路设计的要点是:   (1)要有良好的地线层。良好的地线层处处等电位,不会产生共模电阻偶合,也不会经地线形成环流产生天线效应;良好的地线层能使EMI以最短的路径进入地线而消失。建立良好的地线层最好的方法是采用多层板,一层专门用作线地层;如果只能用双面板,应当尽量从正面走线,反面用作地线层,不得已才从反面过线。   (2)保持足够的距离。对于可能出现有害耦合或幅射的两根线或两组或要保持足够的距离,如滤波器的输入与输出、光偶的输入与输出、交流电源线与弱信号线等。   (3)长线加低通滤波器。走线尽量短捷,不得已走的长线应当在合理的位置插入C、RC或LC低通滤波器。   (4)除了地线,能用细线的不要用粗线

EMC与PCB

狂风中的少年 提交于 2019-12-06 06:42:41
EMC,即电磁兼容性(Electro Magnetic Compatibility)。是EMI(电磁干扰 Electro-Magnetic Interference)和EMS(电磁敏感度 Electro Magnetic Susceptibility)的总称。 EMC = EMI+EMS 其中 EMI = PI+DI (PI:电源完整性 Power integrity;DI:数据完整性 Data integrity)(EMI、PI、DI也统称为SI(信号完整性Signal integrity)) 解释: EMC:一方面要求电子设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值,即EMI;另一方面要求电子设备对所在环境中存在的电磁干扰具有一定程度的抗干扰能力,即EMS。 EMI:是指电子设备(干扰源)通过电磁波对其他电子设备产生干扰的现象。 EMS:是指由于电子设备受到外界的电磁能量,造成自身性能下降的容易程度。 因为有EMI,才有EMS,因为EMI的达标,才能实现EMC的平衡。 由图可知,只要我们做好了SI(信号完整性),便可满足EMI,随后,加上较好的屏蔽措施,即可满足EMS。 可是,在我们实际应用中到底什么时候应该着重考虑这些参数呢? 其实,实际情况中,对于低频、小功耗的电路板我们通常是忽略了这些参数的。当电路设计达到一定的频率与功率的标准时,我们才着重讨论。如

PCB设计时应该注意的EMC林林总总

放肆的年华 提交于 2019-12-06 06:40:24
PCB设计时,EMC应该注意很多方面,具体的总结如下: 在PCB的EMC设计考虑中,首先涉及的便是层的设置; 单板的层数由电源、地的层数和信号层数组成;在产品的EMC设计中,除了元器件的选择和电路设计之外,良好的PCB设计也是一个非常重要的因素。 PCB的EMC设计的关键,是尽可能减小回流面积,让回流路径按照我们设计的方向流动。 PCB层的设计思路: PCB叠层EMC规划与设计思路的核心就是合理规划信号回流路径,尽可能减小信号从单板镜像层的回流面积,使得磁通对消或最小化。 电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层”策略。下面我们将具体谈谈优良的PCB分层策略。 1.布线层的投影平面应该在其回流平面层区域内。布线层如果不在其回流平面层地投影区域内,在布线时将会有信号线在投影区域外,导致“边缘辐射”问题,并且还会导致信号回路面积地增大,导致差模辐射增大。 2.尽量避免布线层相邻的设置。因为相邻布线层上的平行信号走线会导致信号串扰,所以如果无法避免布线层相邻

pcb emc

不羁岁月 提交于 2019-12-06 06:29:03
PCB是电路模块完成功能的基础单元,而PCB设计时所考虑的EMC问题,是一个PCB是否合格的前提,在设计进行预防,使风险降低,在PCB的EMC设计时,关键的点就是要保证每个电源及信号都能形成最短的回路,及电流的流经路径越小越不容易产生干扰,同时也不易被干扰,走线是出考虑阻抗的因素外,尽量保持每根电源线和信号线有对应的地线,使电源和信号的路径不会突变,从而保证了通路的回流顺畅。仅供参考! 来源: CSDN 作者: Micro_ET 链接: https://blog.csdn.net/Micro_ET/article/details/102925612