How to DataFrame.groupby along axis=1
问题 I have: df = pd.DataFrame({'A':[1, 2, -3],'B':[1,2,6]}) df A B 0 1 1 1 2 2 2 -3 6 Q: How do I get: A 0 1 1 2 2 1.5 using groupby() and aggregate() ? Something like, df.groupby([0,1], axis=1).aggregate('mean') So basically groupby along axis=1 and use row indexes 0 and 1 for grouping. (without using Transpose) 回答1: Are you looking for ? df.mean(1) Out[71]: 0 1.0 1 2.0 2 1.5 dtype: float64 If you do want groupby df.groupby(['key']*df.shape[1],axis=1).mean() Out[72]: key 0 1.0 1 2.0 2 1.5 回答2: