metrics

Swift Safe Area Layout Guide and Visual Format Language

匿名 (未验证) 提交于 2019-12-03 01:27:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I want to use Apples visual format language to constrain a view to the new Safe Area Layout Guide in iOS 11. However, I get an exception: -[NSLayoutYAxisAnchor nsli_superitem]: unrecognized selector sent to instance 0x1c447ed40 //Make View Dictionary var views: [String: Any] = ["left": self.leftContainer] //Check swift version and add appropriate piece to the view dictionary if #available(iOS 11, *) { views["topGuide"] = self.view.safeAreaLayoutGuide.topAnchor }else{ views["topGuide"] = self.topLayoutGuide } //Make the constraint using

Logistic regression with spark ml (data frames)

匿名 (未验证) 提交于 2019-12-03 01:25:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: I wrote the following code for logistic regression, I want to use the pipeline API provided by spark.ml . However it gave me an error after I try to print coefficients and intercepts. Also I am having trouble computing the confusion matrix and other metrics like precision, recall. #Logistic Regression: from pyspark . mllib . linalg import Vectors from pyspark . ml . classification import LogisticRegression from pyspark . sql import SQLContext from pyspark import SparkContext from pyspark . sql . types import * from pyspark . sql .

Exporting Spring Boot Actuator Metrics (& Dropwizard Metrics) to Statsd

匿名 (未验证) 提交于 2019-12-03 01:23:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: I'm trying to export all of the metrics which are visible at the endpoint /metrics to a StatsdMetricWriter . I've got the following configuration class so far: package com . tonyghita . metricsdriven . service . config ; import com . codahale . metrics . MetricRegistry ; import com . ryantenney . metrics . spring . config . annotation . EnableMetrics ; import org . slf4j . Logger ; import org . slf4j . LoggerFactory ; import org . springframework . beans . factory . annotation . Autowired ; import org . springframework . beans .

org.apache.kafka.common.KafkaException: Failed to construct kafka consumer

匿名 (未验证) 提交于 2019-12-03 01:06:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am manually starting Zookeeper, then Kafka server and finally the Kafka-Rest server with their respective properties file. Next, I am deploying my Spring Boot application on tomcat In the Tomcat log trace, I am getting the Error org.springframework.context.ApplicationContextException: Failed to start bean 'org.springframework.kafka.config.internalKafkaListenerEndpointRegistry'; nested exception is org.apache.kafka.common.KafkaException: Failed to construct kafka consumer and my application is failing to startup Error Log 25-Dec-2017 15:00

Why use statsd when graphite's Carbon aggregator can do the same job?

可紊 提交于 2019-12-03 01:02:45
问题 I have been exploring the Graphite graphing tool for showing metrics from multiple servers, and it seems that the 'recommended' way is to send all metrics data to StatsD first. StatsD aggregates the data and sends it to graphite (or rather, Carbon). In my case, I want to do simple aggregations like sum and average on metrics across servers and plot that in graphite. Graphite comes with a Carbon aggregator which can do this. StatsD does not even provide aggregation of the kind I am talking

Use tf.metrics in Keras?

匿名 (未验证) 提交于 2019-12-03 01:00:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm especially interested in specificity_at_sensitivity . Looking through the Keras docs : from keras import metrics model.compile(loss='mean_squared_error', optimizer='sgd', metrics=[metrics.mae, metrics.categorical_accuracy]) But it looks like the metrics list must have functions of arity 2, accepting (y_true, y_pred) and returning a single tensor value. EDIT: Currently here is how I do things: from sklearn.metrics import confusion_matrix predictions = model.predict(x_test) y_test = np.argmax(y_test, axis=-1) predictions = np.argmax

Scala source code metrics tool (lines of code, lines of comments and so on) [closed]

孤者浪人 提交于 2019-12-03 00:35:30
Closed. This question is off-topic. It is not currently accepting answers. Learn more . Want to improve this question? Update the question so it's on-topic for Stack Overflow. There seems to be so many code analysis tools supporting the java language, but I am so far unable to find one that supports scala (something simple like finding LOC would be nice)? I'm working in intellij so have tried metricsReloaded and Static plugins, but they are completely ignoring the scala files. Any suggestions would be appreciated.. :) Edit: Metrics needed is just something like lines of code, lines of comment

软件构造笔记 5.1 Metrics, Morphology and External Observations of Reusability

匿名 (未验证) 提交于 2019-12-03 00:34:01
1. 可复用 面向复用编程 :开发出复用的软件。 基于复用编程:利用已有的可复用软件搭建应用。 复用的原因:降低成本和开发时间;经过充分测试,可靠、稳定;标准化,在不同应用中保持一致。 开发可复用的软件成本高于一般软件的成本,因为需要足够高的适应性;性能也会差一些,因为针对更普遍的场景,缺少足够的针对性。使用可复用软件库可以对其进行有效的管理。 衡量可复用性 高可复用性应该满足:小、简单;与标准兼容;灵活可变;可扩展;泛型、参数化;模块化;变化的局部性;稳定;丰富的文档和帮助; 2. 可重用组件的级别和形态 1)源代码的复用:将部分代码 / 全部复制 / 粘贴到程序中。存在维护问题;需要在多个地方更正代码;使用太多的代码(很多版本)。在处理过程中出现高度错误风险,要知道如何使用的软件工作,需要访问源代码。 2)模块级别的复用:类和接口,类是代码重用的原子单元,不需要源代码,类文件或 jar / zip ,只需要包含在类路径中。文档非常重要( Java API );封装有助于重复使用;管理的代码较少;版本控制,向后兼容仍然存在问题;需要将相关类组合在一起 - 静态链接。 委托(delegation):委托就是当一个对象依赖另一个对象来实现其功能的某个子集时(一个实体将某个事物传递给另一个实体)。 显式委托:将发送对象传递给接收对象 隐式委派:通过语言的成员查找规则

距离度量(Distance Metrics)

匿名 (未验证) 提交于 2019-12-03 00:22:01
Euclidean Distance(欧式距离): 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 n维欧氏空间是一个点集, x 两个点 A = (a[1],a[2],…,a[n]) 和 B = (b[1],b[2],…,b[n]) 之间的 距离 ρ( A , B ) 定义为下面的公式: ρ( A , B ) =√ [ ∑( a[i] - b[i] )^2 ] (i = 1,2,…,n) | x | = √( x[1]^2 + x[2]^2 + … + x[n]^2 ) 可用于图像匹配,骨架识别等。 Manhattan Distance(曼哈顿距离): 曼哈顿距离是两点之间的最短距离(在只能向上、下、左、右四个方向进行移动的前提下)。 Mahalanobis Distance(马氏距离): 用来度量一个样本点P与数据分布为D的集合的距离。 假设样本点为: 数据集分布的均值为: 协方差矩阵为S。 则这个样本点P与数据集合的马氏距离为: 马氏距离也可以衡量两个来自同一分布的样本x和y的相似性: 文章来源: 距离度量(Distance Metrics)

距离度量(Distance Metrics)

匿名 (未验证) 提交于 2019-12-03 00:22:01
Euclidean Distance(欧式距离): 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 n维欧氏空间是一个点集, x 两个点 A = (a[1],a[2],…,a[n]) 和 B = (b[1],b[2],…,b[n]) 之间的 距离 ρ( A , B ) 定义为下面的公式: ρ( A , B ) =√ [ ∑( a[i] - b[i] )^2 ] (i = 1,2,…,n) | x | = √( x[1]^2 + x[2]^2 + … + x[n]^2 ) 可用于图像匹配,骨架识别等。 Manhattan Distance(曼哈顿距离): 曼哈顿距离是两点之间的最短距离(在只能向上、下、左、右四个方向进行移动的前提下)。 Mahalanobis Distance(马氏距离): 用来度量一个样本点P与数据分布为D的集合的距离。 假设样本点为: 数据集分布的均值为: 协方差矩阵为S。 则这个样本点P与数据集合的马氏距离为: 马氏距离也可以衡量两个来自同一分布的样本x和y的相似性: 文章来源: 距离度量(Distance Metrics)