Logistic regression with spark ml (data frames)

匿名 (未验证) 提交于 2019-12-03 01:25:01

问题:

I wrote the following code for logistic regression, I want to use the pipeline API provided by spark.ml. However it gave me an error after I try to print coefficients and intercepts. Also I am having trouble computing the confusion matrix and other metrics like precision, recall.

#Logistic Regression: from pyspark.mllib.linalg import Vectors from pyspark.ml.classification import LogisticRegression from pyspark.sql  import SQLContext from pyspark import SparkContext from pyspark.sql.types import * from pyspark.sql.functions import * from pyspark.ml.feature import StringIndexer,VectorAssembler from pyspark.ml import Pipeline from pyspark.ml.evaluation import MulticlassClassificationEvaluator   sc = SparkContext("local", "predictive") sqlContext=SQLContext(sc)  df = sqlContext.read.load('/user/bna_ads_final.csv',                        format='com.databricks.spark.csv',                        header='true',                        inferSchema='true')  df.show(5) df.count() df.dtypes   df=df.withColumn("load_date",df.load_date.cast("timestamp")) df_withday= df.withColumn("day",dayofmonth(df.load_date)) df_new=df_withday.withColumn("Month",month(df.load_date)) df_new=df_new.withColumn("classname",df_new.classname.cast("string")) ignore = ["load_date","wo_flag","serialnumber", "classname"]  def modify_values(r): if r == "A" or r =="B":     return "dispatch" else:     return "non-dispatch"  def show_metrics(metrics): # Overall statistics precision = metrics.precision() recall = metrics.recall() f1Score = metrics.fMeasure() print("Summary Stats") print("Precision = %s" % precision) print("Recall = %s" % recall) print("F1 Score = %s" % f1Score) print (metrics.confusionMatrix())     ol_val = udf(modify_values, StringType()) df_final = df_new.withColumn("wo_flag",ol_val(df_new.wo_flag)) indexer= StringIndexer(inputCol="classname", outputCol="classnamecat") indexed = indexer.fit(df_final).transform(df_final) indexed=indexed.withColumn("classnamecat",indexed.classnamecat.cast("int")) indexed.show(5) (trainingData, testData) = indexed.randomSplit([0.7, 0.3]) assembler = VectorAssembler(inputCols=[x for x in indexed.columns if x not in ignore],outputCol='features') stringindexer=StringIndexer(inputCol="wo_flag", outputCol="labellr") Classifier= LogisticRegression(labelCol="labellr", featuresCol="features") pipeline=Pipeline(stages=[stringindexer,assembler,Classifier]) model = pipeline.fit(trainingData) predictions = model.transform(testData)  selected = predictions.select("features", "labellr", "probability", "prediction") for row in selected.collect(): print row   evaluator = MulticlassClassificationEvaluator( labelCol="labellr", predictionCol="prediction", metricName="precision") accuracy = evaluator.evaluate(predictions) print("Test Error = %g" % (1.0 - accuracy)) print("Accuracy= %g" % (accuracy))  print("Coefficients: " + str(model.coefficients)) print("Intercept: " + str(model.intercept))

The error that I get is :

print("Coefficients: " + str(model.coefficients)) AttributeError: 'PipelineModel' object has no attribute 'coefficients'

I have Spark 1.5 installed on the Hadoop cluster, I will not be able to upgrade anytime soon. Is there a work around to solve this issue.

load_date           |  r         |   classname| mstatus34_timdiff|  day|Month| classnamecat| serialnumber +-----------+------------------+----------+--------------------+------------+--- +-----------+---- 2013-12-29 10:55:...|non-dispatch|        6634|               19|    1|    7|         0.0| 231234      2014-10-05 23:43:...|non-dispatch|        6634|                4|    5|   10|         0.0| 342345 2014-10-09 09:39:...|    dispatch|        5886|               36|    9|   10|         1.0| 563472 2014-09-16 09:47:...|    dispatch|        6634|               53|   16|    9|         0.0| 134657

回答1:

You can access individual stages using stages attribute of the PipelineModel

from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression, LogisticRegressionModel from pyspark.ml.feature import VectorAssembler  df = sc.parallelize([     (0.0, 1.0, 2.0, 4.0),     (1.0, 3.0, 4.0, 5.0) ]).toDF(["label", "x1", "x2", "x3"])  assembler = (VectorAssembler()     .setInputCols(df.columns[1:])     .setOutputCol("features"))  lr = LogisticRegression(maxIter=10, regParam=0.01)  pipeline = Pipeline(stages=[assembler, lr]) model = pipeline.fit(data)  [stage.coefficients for stage in model.stages if hasattr(stage, "coefficients")] ## [DenseVector([2.1178, 1.6843, -1.8338])]  ## or  [stage.coefficients for stage in model.stages     if isinstance(stage, LogisticRegressionModel)] ## [DenseVector([2.1178, 1.6843, -1.8338])]


回答2:

Try this

pipeline=Pipeline(stages=[assembler, lr]) model = pipeline.fit(trainingData) lrm = model.stages[-1]  lrm.coefficients


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!