metrics

Kubernetes1.16下部署Prometheus+node-exporter+Grafana+AlertManager

大城市里の小女人 提交于 2019-12-06 14:21:06
Prometheus 持久化安装 我们prometheus采用nfs挂载方式来存储数据,同时使用configMap管理配置文件。并且我们将所有的prometheus存储在 kube-system #建议将所有的prometheus yaml文件存在一块 mkdir /opt/prometheus -p && cd /opt/prometheus #生成配置文件 cat >> prometheus.configmap.yaml <<EOF apiVersion: v1 kind: ConfigMap metadata: name: prometheus-config namespace: kube-system data: prometheus.yml: | global: scrape_interval: 15s scrape_timeout: 15s scrape_configs: - job_name: 'prometheus' static_configs: - targets: ['localhost:9090'] EOF # 配置文件解释(这里的configmap实际上就是prometheus的配置) 上面包含了3个模块global、rule_files和scrape_configs 其中global模块控制Prometheus Server的全局配置 scrape

Prometheus(1) 概念

有些话、适合烂在心里 提交于 2019-12-06 13:54:34
Prometheus Prometheus是一套开源的监控&报警&时间序列数据库的组合。对我来说,它跟 zabbix 最大的区别就是它没有模板,所有的告警规则都得自己写。。。 它有一套查询命令(promQL)可以进行很多的运算。 组成及架构 介绍以下几个常用的组件: Prometheus Server : 用于收集和存储时间序列数据。 exporters : 用于暴露已有的第三方服务的 metrics 给 Prometheus。 Alertmanager : 从 Prometheus server 端接收到 alerts 后,会进行去除重复数据,分组,并路由到对收的接受方式,发出报警。常见的接收方式有:电子邮件,微信、钉钉等。 大概流程: Prometheus Server 定时去目标上抓取 metrics ,如配置好的 jobs、exporters ,每个目标需要暴露一个 http 接口给它定时抓取。 Prometheus Server 存储收集到的 metrics ,并运行已定义好的 alert.rules,记录新的时间序列或者向 Alertmanager 推送警报。 Alertmanager 根据配置文件,对接收到的告警进行处理,并发出告警。 Grafana 使用 Prometheus 作为数据源,根据收集到的 metrics 生成可视化数据 概念 数据模型

springboot2输出metrics到influxdb

徘徊边缘 提交于 2019-12-06 11:46:04
序 本文主要研究一下如何将springboot2的metrics输出到influxdb maven <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-influx</artifactId> </dependency> 配置 management: metrics: export: influx: enabled: true db: springboot uri: http://192.168.99.100:8086 # user-name: # password: connect-timeout: 1s read-timeout: 10s auto-create-db: true step: 1m num-threads: 2 consistency: one compressed: true batch-size: 10000 influx docker run -d --name influx -p 8086:8086

Storing Months of Historical Metrics from Hystrix in Graphite

时间秒杀一切 提交于 2019-12-06 11:09:17
摘要:RelatedMicroZoneResourcesWhyyouneedtoestablishaDevOpscultureHowtheEvernoteopsteamgetspeaceofmindfromPagerDuty'ssmartalerting&;on-callschedulingMetrics-DrivenDevelopmentNewCompositeMetricsLanguageFunctionsMetrics-DrivenDevelopment-PartII Related MicroZone Resources Why you need to establish a DevOps culture How the Evernote ops team gets peace of mind from PagerDuty's smart alerting &; on-call scheduling Metrics-Driven Development New Composite Metrics Language Functions Metrics-Driven Development - Part II Like this piece? Share it with your friends: One of the killer-features of Hystrix is

从零开始:Prometheus

拈花ヽ惹草 提交于 2019-12-06 07:32:28
前言 技巧篇: 进阶之路:Prometheus —— 技巧篇 理解篇: 进阶之路:Prometheus —— 理解篇 一、关于Prometheus Prometheus是一套开源的监控系统,它将所有信息都存储为时间序列数据;因此实现一种Profiling监控方式,实时分析系统运行的状态、执行时间、调用次数等,以找到系统的热点,为性能优化提供依据。 Prometheus提供了4中不同的Metrics类型: Counter, Gauge, Histogram, Summary。 Counter:只增不减的计数器 计数器可以用于记录只会增加不会减少的指标类型,比如记录应用请求的总量,cpu使用时间等。 对于Counter类型的指标,只包含一个inc()方法,用于计数器+1。 一般而言,Counter类型的metrics指标在命名中我们使用_total结束,如http_requests_total。 Gauge: 可增可减的仪表盘 对于这类可增可减的指标,可以用于反应应用的当前状态。 例如在监控主机时,主机当前空闲的内存大小,可用内存大小。或者容器当前的cpu使用率,内存使用率。 对于Gauge指标的对象则包含两个主要的方法inc()以及dec(),用户添加或者减少计数。 Histogram:自带buckets区间用于统计分布统计图 主要用于在指定分布范围内(Buckets

Is there a standard way to count statements in C#

我怕爱的太早我们不能终老 提交于 2019-12-06 06:47:19
问题 I was looking at some code length metrics other than Lines of Code. Something that Source Monitor reports is statements. This seemed like a valuable thing to know, but the way Source Monitor counted some things seemed unintuitive. For example, a for statement is one statement, even though it contains a variable definition, a condition, and an increment statement. And if a method call is nested in an argument list to another method, the whole thing is considered one statement. Is there a

how to use tf.metrics.__ with estimator model predict output

余生颓废 提交于 2019-12-06 05:42:58
I try to follow the tensorflow API 1.4 document to achieve what I need in a learning process. I am now at this stage, can produce a predict object for example: classifier = tf.estimator.DNNClassifier(feature_columns=feature_cols,hidden_units=[10, 20, 10], n_classes=3, model_dir="/tmp/xlz_model") predict = classifier.predict(input_fn=input_pd_fn_prt (test_f),predict_keys=["class_ids"]) label =tf.constant(test_l.values, tf.int64) how can I use predict and label in tf.metrics.auc for example: out, opt = tf.metrics.auc(label, predict) I have tried so many different options. there are no clear

Metrics & Object-oriented programming

我的未来我决定 提交于 2019-12-06 05:35:38
问题 I would like to know if somebody often uses metrics to validate its code/design. As example, I think I will use: number of lines per method (< 20) number of variables per method (< 7) number of paremeters per method (< 8) number of methods per class (< 20) number of field per class (< 20) inheritance tree depth (< 6). Lack of Cohesion in Methods Most of these metrics are very simple. What is your policy about this kind of mesure ? Do you use a tool to check their (e.g. NDepend) ? 回答1:

TensorFlow: Is there a metric to calculate and update top k accuracy?

跟風遠走 提交于 2019-12-06 03:49:57
问题 The current tf.contrib.metrics.streaming_accuracy is only able to calculate the top 1 accuracy, and not the top k. As a workaround, this is what I've been using: tf.reduce_mean(tf.cast(tf.nn.in_top_k(predictions=predictions, targets=labels, k=5), tf.float32)) However, this does not give me a way to calculate the streaming accuracies averaged across each batch, which would be useful in getting a stable evaluation accuracy. I am currently manually calculating this streaming top 5 accuracy

How to implement statistics using dropwizard metrics and spring-mvc

☆樱花仙子☆ 提交于 2019-12-06 02:56:00
问题 I am having about 20 APIs and I want to implement statistics like execution time, responses count .. for each API. After doing some research, I came to know that dropwizard metrics is the best approach for implementing such functionalities. I am using Spring MVC framework (non-bootable). Can anybody please suggest me how to integrate Metrics to Spring MVC framework? If possible please provide any code as a reference. 回答1: You can use Metrics for Spring. Here's a github link, which explains