merge

PHP: Need loop to alternate between returned posts

霸气de小男生 提交于 2020-02-02 06:28:05
问题 I have a an array of posts that are returned by doing three queries. 3 posts from the blog where posts are NOT in 'In the Media' or 'Insights', 3 from the blog where posts are in 'In the Media' 3 from the blog where posts are in 'Insights'. Here's what I have for that. I don't think it's the most elegant solution: <? $args = array( 'post_type' => 'post', 'posts_per_page' => 3, 'category__not_in' => array( 268, 269 ) ); $homePosts = new WP_Query($args); $args = array( 'post_type' => 'post',

merge左连接多个关键词的方法

落花浮王杯 提交于 2020-02-02 02:27:45
#coding=utf-8 import pandas as pd ws=pd.read_excel('F:\\项目\\20200129\\level_title_review都相同(1)(1).xls') wp=pd.read_excel('F:\\项目\\20200201\\tp_2020conference_rebuttal.xlsx') df=pd.merge(ws,wp,on=['title','reviewscore','reviewlevel'],how='left') df.to_excel('totalhigh9999999.xlsx',index=False) 来源: CSDN 作者: 济职小混混 链接: https://blog.csdn.net/zhuiyunzhugang/article/details/104135976

Merge trunk into branch with SVN: “Secure Connection Truncated”

心已入冬 提交于 2020-02-01 19:00:30
问题 after trying to merge changes to an svn trunk back to the branch with the following command: ../branches/myBranch$ svn merge -r 94:171 https://.../trunk --dry-run I get the following error from SVN: svn: REPORT of '/svnroot/simspark/!svn/vcc/default': Could not read chunk size: Secure connection truncated (https://simspark.svn.sourceforge.net) We already tried to google this for quite a while and concluded that this is kinda pointless. I won't stop you from trying yourself of course, but you

Merge trunk into branch with SVN: “Secure Connection Truncated”

人盡茶涼 提交于 2020-02-01 18:58:43
问题 after trying to merge changes to an svn trunk back to the branch with the following command: ../branches/myBranch$ svn merge -r 94:171 https://.../trunk --dry-run I get the following error from SVN: svn: REPORT of '/svnroot/simspark/!svn/vcc/default': Could not read chunk size: Secure connection truncated (https://simspark.svn.sourceforge.net) We already tried to google this for quite a while and concluded that this is kinda pointless. I won't stop you from trying yourself of course, but you

【干货】数据挖掘比赛大数据处理和建模经验

一曲冷凌霜 提交于 2020-02-01 00:57:51
有同学反馈,我们决赛的数据比较大,由于机器资源的限制,在处理数据和构建模型的时候,会遇到一些瓶颈。以下来抛一下我们了解的一些处理思路: 1 采样 可以对数据进行下采样,然后使用不同的子集进行特征抽取和建模,最后再进行集成。 2 特征处理 在处理大规模原始数据时,需要充分借助外存(硬盘)空间,只把真正需要处理的数据放进内存。一般而言,采用流式、分块的方式处理数据可以解决大部分问题。以下是一些具体的技巧。 a) 只加载需要的数据到内存。 有些特征可以通过单条数据直接得到,如星期特征。这种情况下,可以使用 streaming 的方式进行处理,每次读入若干数据(chunk),处理,生成特征,然后再写到硬盘。使用 pandas 的 read_csv,可以设置 chunksize 参数,譬如 for chunk in read_csv ( infile, chunksize=10000 ); b) 只保留需要的数据在内存。 决赛的数据可以直接装到 16G 内存中,每次生成一条样本的特征,就把特征直接写入硬盘,不在内存保留。如果生成的特征较多,可以分多次生成,写到分散的特征文件,最后进行一个 merge 操作。在 merge 的时候,可以对多个特征文件按照统一的 key 进行排序,然后同时扫描多个特征文件,进行merge,再写到硬盘; c) 充分利用排序加速。 在上面的 streaming

Merge made by 'recursive' strategy

﹥>﹥吖頭↗ 提交于 2020-01-31 08:50:45
问题 I understood that git merge recursive actually happens when there is more than 1 common ancestor, and it will create a virtual commit to merge these common ancestors before proceeding to merge the more recent commits (sorry i am not sure whether there should be a term for this). But I have been trying to find more information on how git merge recursive strategy actually works in detail but not much info can be found. Can anyone explain in details how git merge recursive really perform, with

Merge made by 'recursive' strategy

六月ゝ 毕业季﹏ 提交于 2020-01-31 08:50:29
问题 I understood that git merge recursive actually happens when there is more than 1 common ancestor, and it will create a virtual commit to merge these common ancestors before proceeding to merge the more recent commits (sorry i am not sure whether there should be a term for this). But I have been trying to find more information on how git merge recursive strategy actually works in detail but not much info can be found. Can anyone explain in details how git merge recursive really perform, with

MySQL存储引擎

ぐ巨炮叔叔 提交于 2020-01-31 04:45:50
MySQL存储引擎 存储引擎 MySQL存储引擎 存储引擎   MySQL数据库在实际的工作中分为了语句分析层和存储引擎层,其中语句分析层主要负责与客户端完成连接并且事先分析出SQL语句的内容和功能,存储引擎层则主要负责接收来自语句分析层的分析结果,完成相应的数据输入输出和文件操作,即如何存储数据、如何为存储的数据建立索引和如何更新、查询数据等技术的实现方法。因为在关系数据库中数据的存储是以表的形式存储的,所以存储引擎也可以称为表类型(即存储和操作此表的类型)。 MySQL存储引擎 (1)MyISAM存储引擎   不支持事务、也不支持外键,优势是访问速度快,对事务完整性没有要求或者以SELECT、INSERT为主的应用基本上可以用这个引擎来创建表。支持3种不同的存储格式,分别是:静态表、动态表、压缩表 静态表:表中的字段都是非变长字段,每个记录都是固定长度的,优点存储非常迅速,容易缓存,出现故障容易恢复;缺点是占用的空间通常比动态表多(因为存储时会按照列的宽度定义补足空格) 动态表:记录不是固定长度的,这样存储的优点是占用的空间相对较少;缺点:频繁的更新、删除数据容易产生碎片,需要定期执行OPTIMIZE TABLE或者myisamchk -r命令来改善性能 压缩表:因为每个记录是被单独压缩的,所以只有非常小的访问开支 (2)InnoDB存储引擎   该存储引擎提供了具有提交

Merge two maps, summing values for same keys in C++

荒凉一梦 提交于 2020-01-31 04:45:17
问题 I have two std::map<int,int> maps and wish to merge them into a third map like this: if the same key is found in both maps, create a pair in the third map with the same key and a value which a sum of values from the first and second map, otherwise just copy a pair to the third map. I suspect it can be done with std::accumulate , but I don't understand it well enough. 回答1: An overly generic solution inspired by std::set_union . Unlike the first suggested answer, this should run in O(n) instead

【MapReduce】二、MapReduce编程模型

隐身守侯 提交于 2020-01-30 17:59:03
  通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算。所以,还需要重点了解MapReduce的并行编程模型和运行机制。   我们知道, MapReduce计算模型主要由三个阶段构成:Map、shuffle、Reduce 。Map和Reduce操作需要我们自己定义相应Map类和Reduce类。而 shuffle则是系统自动帮我们实现的,是MapReduce的“心脏”,是奇迹发生的地方。 是其主要流程基本如下图所示: 1、数据的输入   首先,对于MapReduce所要处理的数据,应当存储在分布式文件系统(如HDFS)中,通过使用Hadoop资源管理系统YARN,将MapReduce计算转移到存储有部分数据的机器上。   对于输入数据,首先要对其进行输入分片,Hadoop为 每个输入分片构建一个map任务 ,在该任务中调用map函数对分片中的每条数据记录进行处理。处理每个分片的时间小于处理整个数据所花的时间,因此, 只要合理分片,整个处理过程就能获得很好的负载均衡 。   而关于合理分片,我们不难想到:如果分片数据太大,那么处理所花的时间比较长,整体性能提升不多;反之,如果分片数据切分的太小,那么管理分片的时间和构建map任务的时间又会加大。因此分片要合理,一般情况下,