iris

Code Iris plugin on Android Studio

匿名 (未验证) 提交于 2019-12-03 08:36:05
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am trying to make code iris plugin work on Android studio. I press right click -> Create Code Iris graph and then I get a notification that my graph is ready. But I do not know when this graph is stored, what is the name of the file created and how to open it. Any ideas? 回答1: Complete Guidance of CODE IRIS Graph Creation:- You have to generate Code Iris by just right clicking on project, and then select "Create Code Iris Graph" , (Check the snapshot below) Now your graph will be created, you can get the graph on the right side of Android

stargazer left align LaTeX table columns

匿名 (未验证) 提交于 2019-12-03 08:33:39
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: stargazer automatically centres values within tables. How can I left align the columns? Put this code in an .Rnw file and use knitr to convert to .tex: <<load, echo=FALSE, warning=FALSE, message=FALSE>>= opts_chunk$set(eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE, dpi=300) @ \documentclass[a4paper,11pt]{article} \usepackage{lipsum} % Required to insert dummy text \begin{document} \title{} \author{} \date{\today} \maketitle \section{Header} Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut

Scatter plot with variable marker size (seaborn)

匿名 (未验证) 提交于 2019-12-03 07:50:05
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am using a seaborn pairplot to plot a scatter plot of different dimensions of my datapoints. However, I want the markers of the datapoints to have a size that corresponds to one of the dimensions of the datapoints. I have the following code: markersize = 1000* my_dataframe['dim_size'] / sum(my_dataframe['dim_size']) sns.set_context("notebook", font_scale=1.5, rc={'figure.figsize': [11, 8]}) sns.set_style("darkgrid", {"axes.facecolor": ".9"}) kws = dict(s=markersize, linewidth=.5, edgecolor="w") sbax = sns.pairplot(my_dataframe, hue='dim

create consecutive integer and then create index to a table stored in sqlserver using dplyr

匿名 (未验证) 提交于 2019-12-03 07:36:14
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am doing some data processing of some large tables stored in sqlserver that creating an index sometimes reduce the time needed for some R script to run. I try to use the mutate function of dplyr to create a new column ( idx ) with consecutive number, then use that idx column as index. But the mutate function seems not working and constantly give me this error: > tbl(channel,'tbl_iris') %>% mutate(idx=1:n()) Error in from:to : NA/NaN argument In addition: Warning message: In 1:n() : NAs introduced by coercion\ Right now I am doing something

sklearn之决策树和随机森林对iris的处理比较

為{幸葍}努か 提交于 2019-12-03 04:17:41
# Iris鸢尾花数据集是常用的分类实验数据集,由Fisher, 1936收集整理。 # 是一类多重变量分析的数据集。分为3类,每类50个数据,每个数据包含4个属性。 # 可通过4个属性预测鸢尾花属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。 sklearn决策树 from sklearn import datasets,tree import numpy as np #载入数据集 iris=datasets.load_iris() iris_data=iris['data'] iris_label=iris['target'] X=np.array(iris_data) Y=np.array(iris_label) #训练 clf=tree.DecisionTreeClassifier(max_depth=5) clf.fit(X,Y) #预测 print clf.predict([[4.1, 2.2, 2.3, 5.4]]) sklearn随机森林 from sklearn import datasets, ensemble import numpy as np iris=datasets.load_iris() iris_data=iris['data'] iris_label=iris['target'] X=np.array(iris

How to give sns.clustermap a precomputed distance matrix?

匿名 (未验证) 提交于 2019-12-03 03:05:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: Usually when I do dendrograms and heatmaps, I use a distance matrix and do a bunch of SciPy stuff. I want to try out Seaborn but Seaborn wants my data in rectangular form (rows=samples, cols=attributes, not a distance matrix)? I essentially want to use seaborn as the backend to compute my dendrogram and tack it on to my heatmap. Is this possible? If not, can this be a feature in the future. Maybe there are parameters I can adjust so it can take a distance matrix instead of a rectangular matrix? Here's the usage: My code below: from sklearn

R dplyr: rename variables using string functions

匿名 (未验证) 提交于 2019-12-03 03:03:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: (Somewhat related question: Enter new column names as string in dplyr's rename function ) In the middle of a dplyr chain ( %>% ), I would like to replace multiple column names with functions of their old names (using tolower or gsub , etc.) library(tidyr); library(dplyr) data(iris) # This is what I want to do, but I'd like to use dplyr syntax names(iris) % gather(measurement, value, -species) %>% group_by(species,measurement) %>% summarise(avg_value = mean(value)) I see ?rename takes the argument replace as a named character vector, with new

Evaluating Logistic regression with cross validation

匿名 (未验证) 提交于 2019-12-03 02:50:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I would like to use cross validation to test/train my dataset and evaluate the performance of the logistic regression model on the entire dataset and not only on the test set (e.g. 25%). These concepts are totally new to me and am not very sure if am doing it right. I would be grateful if anyone could advise me on the right steps to take where I have gone wrong. Part of my code is shown below. Also, how can I plot ROCs for "y2" and "y3" on the same graph with the current one? Thank you import pandas as pd Data=pd.read_csv ('C:\\Dataset.csv'

Sample Datasets in Pandas

匿名 (未验证) 提交于 2019-12-03 02:46:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: When using R it's handy to load "practice" datasets using data(iris) or data(mtcars) Is there something similar for Pandas? I know I can load using any other method, just curious if there's anything builtin 回答1: The rpy2 module is made for this: from rpy2.robjects import r, pandas2ri pandas2ri.activate() r['iris'].head() yields Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa Up to pandas 0.19 you could use

How can I use dplyr to apply a function to all non-group_by columns?

匿名 (未验证) 提交于 2019-12-03 02:45:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm trying to use the dplyr package to apply a function to all columns in a data.frame that are not being grouped, which I would do with aggregate() : aggregate(. ~ Species, data = iris, mean) where mean is applied to all columns not used for grouping. (Yes, I know I can use aggregate, but I'm trying to understand dplyr.) I can use summarize like this: species <- group_by(iris, Species) summarize(species, Sepal.Length = mean(Sepal.Length), Sepal.Width = mean(Sepal.Width)) But is there a way to have mean() applied to all columns that are not