I would like to use cross validation to test/train my dataset and evaluate the performance of the logistic regression model on the entire dataset and not only on the test set (e.g. 25%).
These concepts are totally new to me and am not very sure if am doing it right. I would be grateful if anyone could advise me on the right steps to take where I have gone wrong. Part of my code is shown below.
Also, how can I plot ROCs for "y2" and "y3" on the same graph with the current one?
Thank you
import pandas as pd Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo') feature_cols=['A','B','C','D','E'] X=Data[feature_cols] Y=Data['Status'] Y1=Data['Status1'] # predictions from elsewhere Y2=Data['Status2'] # predictions from elsewhere from sklearn.linear_model import LogisticRegression logreg=LogisticRegression() logreg.fit(X_train,y_train) from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn import metrics, cross_validation predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10) metrics.accuracy_score(y, predicted) from sklearn.cross_validation import cross_val_score accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy') print (accuracy) print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean()) from nltk import ConfusionMatrix print (ConfusionMatrix(list(y), list(predicted))) #print (ConfusionMatrix(list(y), list(yexpert))) # sensitivity: print (metrics.recall_score(y, predicted) ) import matplotlib.pyplot as plt probs = logreg.predict_proba(X)[:, 1] plt.hist(probs) plt.show() # use 0.5 cutoff for predicting 'default' import numpy as np preds = np.where(probs > 0.5, 1, 0) print (ConfusionMatrix(list(y), list(preds))) # check accuracy, sensitivity, specificity print (metrics.accuracy_score(y, predicted)) #ROC CURVES and AUC # plot ROC curve fpr, tpr, thresholds = metrics.roc_curve(y, probs) plt.plot(fpr, tpr) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate)') plt.show() # calculate AUC print (metrics.roc_auc_score(y, probs)) # use AUC as evaluation metric for cross-validation from sklearn.cross_validation import cross_val_score logreg = LogisticRegression() cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean()