impala

Impala 数据刷新

感情迁移 提交于 2020-01-10 02:58:50
1. refresh refresh 用于刷新某个表或者某个分区的数据信息,它会重用之前的表元数据,仅仅执行文件刷新操作。 主要用于表中元数据未修改,数据的修改,例如insert into、load data、alter table add partition、llter table drop partition等,如果直接修改表的hdfs文件(增加、删除或者重命名)也需要指定refresh刷新数据信息。 # 刷新表 refresh [table] # 刷新分区 refresh [table] partition [partition] 2. invalidate metadata invalidate metadata 用于刷新全库或者某个表的元数据,包括表的元数据和表内的文件数据。 它会首先清除表的缓存,然后从metastore中重新加载全部数据并缓存,该操作代价比较重。 主要用于在hive中修改了表的元数据,需要同步到impalad,例如 create table / drop table / alter table add columns等 # 重新加载所有库中的所有表 invalidate metadata; # 重新加载指定的某个表 invalidate metadata [table] 来源: CSDN 作者: 南宫紫攸 链接: https://blog.csdn

How do you get 'event date > current date - 10 days) in HiveQL?

情到浓时终转凉″ 提交于 2020-01-07 09:03:15
问题 I'm putting together a query that will get refreshed daily that needs to pull records from the last ten dates. The tables I'm accessing have a 'xxdatetime' column with the unix time stamp and an 'eventdate' column with the date in a yyyy-mm-dd. In Impala, the answer was easy: where eventdate > to_date(days_sub(now(), 10)) I used a variation of it in Hive that failed because I guess it was scanning the whole table and the tables are MASSIVE: where datediff(cast(current_timestamp() as string),

Impala中的invalidate metadata和refresh

荒凉一梦 提交于 2020-01-07 02:52:30
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 前言 Impala采用了比较奇葩的多个impalad同时提供服务的方式,并且它会由catalogd缓存全部元数据,再通过statestored完成每一次的元数据的更新到impalad节点上,Impala集群会缓存全部的元数据,这种缓存机制就导致通过其他手段更新元数据或者数据对于Impala是无感知的,例如通过hive建表,直接拷贝新的数据到HDFS上等,Impala提供了两种机制来实现元数据的更新,分别是INVALIDATE METADATA和REFRESH操作,本文将详细介绍这两个操作。 使用方式 INVALIDATE METADATA是用于刷新全库或者某个表的元数据,包括表的元数据和表内的文件数据,它会首先清楚表的缓存,然后从metastore中重新加载全部数据并缓存,该操作代价比较重,主要用于在hive中修改了表的元数据,需要同步到impalad,例如create table/drop table/alter table add columns等。 INVALIDATE METADATA 语法: REFRESH是用于刷新某个表或者某个分区的数据信息,它会重用之前的表元数据,仅仅执行文件刷新操作,它能够检测到表中分区的增加和减少,主要用于表中元数据未修改,数据的修改,例如INSERT INTO、LOAD

Using Hive UDF in Impala gives erroneous results in Impala 1.2.4

血红的双手。 提交于 2020-01-06 14:54:47
问题 I have two Hive UDFs in Java which work perfectly well in Hive. Both functions are complimentary to each other. String myUDF(BigInt) BigInt myUDFReverso(String) myUDF("myInput") gives some output which when myUDFReverso(myUDF("myInput")) should give back myInput This works in Hive but when I try to use it in Impala (version 1.2.4) it gives expected answer for myUDF(BigInt) (the answer printed is correct) but the answer when passed to myUDFReverso(String) doesn't give back original answer). I

Using Hive UDF in Impala gives erroneous results in Impala 1.2.4

生来就可爱ヽ(ⅴ<●) 提交于 2020-01-06 14:54:05
问题 I have two Hive UDFs in Java which work perfectly well in Hive. Both functions are complimentary to each other. String myUDF(BigInt) BigInt myUDFReverso(String) myUDF("myInput") gives some output which when myUDFReverso(myUDF("myInput")) should give back myInput This works in Hive but when I try to use it in Impala (version 1.2.4) it gives expected answer for myUDF(BigInt) (the answer printed is correct) but the answer when passed to myUDFReverso(String) doesn't give back original answer). I

How to solve a gap-and-islands problem with a high volume set of data in Impala

点点圈 提交于 2020-01-06 05:34:27
问题 Have a Type 2 Dimension residing in an Impala table with ~500M rows having 102 columns : ( C1, C2, ..., C8,...C100, Eff_DT, EXP_DT) Need to select only the rows that have distinct combination value of (C1,C2,..,C8). For each selected record, the EFF_DT and EXP_DT must be respectively the min(eff_dt) and max(eff_dt) of the group to which that record belongs ( a group here is defined by a distinct combination (C1,C2,..,C8) A simple Group By will not solve the problem here because it will omit

Multiple query execution in cloudera impala

拟墨画扇 提交于 2020-01-04 14:11:31
问题 Is it possible to execute multiple queries at the same time in impala ? If yes, how does impala handle it? 回答1: I would certainly do some tests on your own, but I was not able to get multiple queries to execute: I was using Impala connection, and reading query from a .sql file. This works for single commands. from impala.dbapi import connect # actual server and port changed for this post for security conn=connect(host='impala server', port=11111,auth_mechanism="GSSAPI") cursor = conn.cursor()

Impala Query: Find value in pipe-separated list

可紊 提交于 2020-01-04 01:18:23
问题 I have a column containing rows of pipe separated STRING values: | colA | ___________ | 5|4|2|255 | | 5|4|4|0 | | 5|4|4|3 | | 5|4|4|4 | I need to create a query that will select all rows that contain 4 or 5, but never 2 or 3. Something along the lines of: SELECT t.colA FROM my_table t WHERE (t IN ("4", "5") AND t NOT IN ("2","3") Resulting in: | colA | ___________ | 5|4|4|0 | | 5|4|4|4 | I ended up using a combination of the two answers below, as using either method alone still left me with

impala paper笔记1

倾然丶 夕夏残阳落幕 提交于 2020-01-03 15:22:23
不生产博客,只是汉化别人的成果 目录 摘要 介绍 用户角度的impala 物理schema设计 sql 支持 架构 state distribution catalog service impala paper的链接 http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf 摘要 impala是一个现代化,开源的mpp sql引擎架构,一开始就是为了处理hadoop环境上的数据。impala提供低延迟和高并发的query对于hadoop上的BI/OLAP,不像hive那样的批处理框架,这篇paper从使用者的角度阐述impala的总体架构和组件,简要说明Impala较别的sql on hadoop的优势 介绍 impala是开源的,最先进的mpp sql引擎,与hdaoop高度集成,高伸缩、高灵活。impala的目的是结合sql支持与传统数据库的多用户高性能(高并发)在hadoop上 不像别的系统,eg:postgre,impala是一个全新的引擎,由c++和java编写,拥有像hadoop一样的灵活性通过结合一些组件,eg:hdfs、hbase、hive metastore等等,并且能够读取常用的存储格式数据,eg:parquet、rcfile、avro等,为了降低延迟,没有使用类似mapreduce和远程拉取数据

大数据开发必须掌握的五大核心技术

痴心易碎 提交于 2020-01-02 17:07:53
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。 一、数据采集与预处理 对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。 Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中