impala

How does impala provide faster query response compared to hive

家住魔仙堡 提交于 2019-12-02 15:42:49
I have recently started looking into querying large sets of CSV data lying on HDFS using Hive and Impala. As I was expecting, I get better response time with Impala compared to Hive for the queries I have used so far. I am wondering if there are some types of queries/use cases that still need Hive and where Impala is not a good fit. How does Impala provide faster query response compared to Hive for the same data on HDFS? You should see Impala as "SQL on HDFS", while Hive is more "SQL on Hadoop". In other words, Impala doesn't even use Hadoop at all. It simply has daemons running on all your

Fast Hadoop Analytics (Cloudera Impala vs Spark/Shark vs Apache Drill)

房东的猫 提交于 2019-12-02 14:06:45
I want to do some "near real-time" data analysis (OLAP-like) on the data in a HDFS. My research showed that the three mentioned frameworks report significant performance gains compared to Apache Hive. Does anyone have some practical experience with either one of those? Not only concerning performance, but also with respect of stability? Comparison between Hive and Impala or Spark or Drill sometimes sounds inappropriate to me. The goals behind developing Hive and these tools were different. Hive was never developed for real-time, in memory processing and is based on MapReduce. It was built for

Kerberos error connecting to impala and hbase

落花浮王杯 提交于 2019-12-02 13:26:53
问题 We are developing a web application that interacts with hadoop components such as HDFS, HBase and Impala. The cluster is kerberized, we are authenticating with JAAS config. We are configuring JAAS in VM arguments as below -Djava.security.auth.login.config=/user/gss-jaas.conf -Djava.security.krb5.conf=/user/krb5.ini -Djavax.security.auth.useSubjectCredsOnly=false Our JAAS config is as below com.sun.security.jgss.initiate { com.sun.security.auth.module.Krb5LoginModule required useTicketCache

Impala 入门

僤鯓⒐⒋嵵緔 提交于 2019-12-02 10:31:32
1 概述 1.1 什么是 Impala? Cloudera 公司推出,提供对 HDFS、Hbase 数据的高性能、低延迟的交互式 SQL 查询功能。 基于 Hive,使用内存计算,兼顾数据仓库、具有实时、批处理、多并发等优点。 是 CDH 平台首选的 PB 级大数据实时查询分析引擎。 1.2 Impala 的优缺点 1.2.1 优点 基于内存运算,不需要把中间结果写入磁盘,省掉了大量的 I/O 开销 无需转换为 MR,直接访问存储在 HDFS,HBase 中的数据进行作业调度,速度快 使用了支持 Data locality 的 I/O 调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销 支持各种文件格式,如 TEXTFILE 、SEQUENCEFILE 、RCFile、Parquet 可以访问 Hive 的 metastore,对 Hive 数据直接做数据分析 1.2.2 缺点 对内存的依赖大,且完全依赖于 Hive 实践中,分区超过 1 万,性能严重下降 只能读取文本文件,而不能直接读取自定义二进制文件 每当新的记录/文件被添加到 HDFS 中的数据目录时,该表需要被刷新 1.3 Impala 的架构 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AnGGSwdL-1571936237242)(file:///C:/Users

Is it possible to load parquet table directly from file?

岁酱吖の 提交于 2019-12-02 04:47:43
问题 If I have a binary data file(it can be converted to csv format), Is there any way to load parquet table directly from it? Many tutorials show loading csv file to text table, and then from text table to parquet table. From efficiency point of view, is it possible to load parquet table directly from either a binary file like what I already have? Ideally using create external table command. Or I need to convert it to csv file first? Is there any file format restriction? 回答1: Unfortunately it is

Joining tables that compute values between dates

偶尔善良 提交于 2019-12-02 03:57:57
so I have the two following tables Table A Date num 01-16-15 10 02-20-15 12 03-20-15 13 Table B Date Value 01-02-15 100 01-03-15 101 . . 01-17-15 102 01-18-15 103 . . 02-22-15 104 . . 03-20-15 110 And i want to create a table that have the the following output in impala Date Value 01-17-15 102*10 01-18-15 103*10 02-22-15 104*12 . . . . So the idea is that we only consider dates between 01-16-15 and 02-20-15, and 02-20-15 and 03-20-15 exclusively. And use the num from the starting date of that period, say 01-16-15, and multiply it by everyday in the period, i.e. 1-16 to 2-20. I understand it

DbVisualizer 使用Impala驱动连接Hive数据库

穿精又带淫゛_ 提交于 2019-12-02 03:21:41
在最近工作中使用到Hive数据库存储大数据,但是CDH环境没有提供好的管理Hive数据的界面,因此考虑到使用客户端工具连接Hive数据库进行数据查询。 连接Hive数据库的GUI客户端工具有DBeaver和DBVisualizer,我这里使用DBVisualizer来连接Hive数据库 。 连接Hive数据库的驱动有hive2驱动和impala驱动,使用hive2驱动连接hive数据库可以参考这篇文章 https://www.cnblogs.com/cauwt/p/dbvisualizer--connect-hive.html 但是hive2驱动连接hive数据库需要使用的jar文件太多,我们这里使用impala驱动连接hive数据库。 impala驱动文件使用Cloudera提供的Cloudera Impala JDBC库,从 https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-3.html 下载。 下载后解压,使用JDBC41的jar包作为驱动包(如下图所示) 在DBVisualizer的[Tools]-[Driver Manager]菜单窗口中添加impala驱动,格式如图所示 驱动文件选取下载的JDBC41驱动jar文件。 在创建数据库连接时,在向导界面中选择impala驱动 在连接参数界面中设置DB

Is it possible to load parquet table directly from file?

牧云@^-^@ 提交于 2019-12-02 01:28:35
If I have a binary data file(it can be converted to csv format), Is there any way to load parquet table directly from it? Many tutorials show loading csv file to text table, and then from text table to parquet table. From efficiency point of view, is it possible to load parquet table directly from either a binary file like what I already have? Ideally using create external table command. Or I need to convert it to csv file first? Is there any file format restriction? Unfortunately it is not possible to read from a custom binary format in Impala. You should convert your files to csv, then

Impala 和 Hive 之间 SQL 区别(翻译)

房东的猫 提交于 2019-12-01 19:57:29
Impala 和 Hive 之间 SQL 区别 当前版本的 Impala(1.2.3)不支持以下在 HiveQL 中可用的 SQL 特性: 非标量数据类型如 maps, arrays, structs 可扩展机制(Extensibility mechanisms)例如 TRANSFORM , 自定义文件格式, 或自定义 SerDes; z Impala 1.2 XML 和 JSON 函数 HiveQL 中的某些聚合函数: variance, var_pop, var_samp, stddev_pop, stddev_samp, covar_pop, covar_samp, corr, percentile, percentile_approx, histogram_numeric,collect_set; Impala 支持这些聚合函数: MAX() , MIN() , SUM() , AVG() , COUNT() 用户定义产生表函数(User Defined Table Generating Functions,UDTFs) 采样 Lateral views 授权功能如角色 一个查询中多个 DISTINCT 子句(Multiple DISTINCT clauses per query) Impala 当前不支持这些 HiveQL 语句: ANALYZE TABLE (在

Impala 表使用 RCFile 文件格式(翻译)

旧时模样 提交于 2019-12-01 19:56:40
Impala 表使用 RCFile 文件格式 Cloudera Impala 支持使用 RCFile 数据文件。 查询一下章节了解 Impala 表使用 RCFile 数据文件的详情: 创建RCFile 表并加载数据 RCFile 表启用压缩 创建 RCFile 表并加载数据 假如你没有使用现有的数据文件,先创建一个合适格式的文件。 创建 RCFile 表: 在 impala-shell 中,执行类似下面的命令: create table rcfile_table (column_specs) stored as rcfile; 因为 Impala 可以查询一些目前它无法写入数据的表,当创建特定格式的表之后,你可能需要在 Hive shell 中加载数据。参见 Impala 如何使用 Hadoop 文件格式 了解详细信息。当通过 Hive 或其他 Impala 之外的机制加载数据之后,在你下次连接到 Impala 节点时,在执行关于这个表的查询之前,执行 REFRESH table_name 语句,以确保 Impala 识别到新添加的数据。 例如,下面是你如何在 Impala 中创建 RCFile 表(通过显式设置列,或者克隆其他表的结构),通过 Hive 加载数据,并通过 Impala 查询: $ impala-shell -i localhost [localhost