Pytorch--autograd
Pytorch–autograd 用Tensor训练网络很方便,但从上一小节最后的线性回归例子来看,反向传播过程需要手动实现。这对于像线性回归等较为简单的模型来说,还可以应付,但实际使用中经常出现非常复杂的网络结构,此时如果手动实现反向传播,不仅费时费力,而且容易出错,难以检查。torch.autograd就是为方便用户使用,而专门开发的一套自动求导引擎,它能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 计算图(Computation Graph)是现代深度学习框架如PyTorch和TensorFlow等的核心,其为高效自动求导算法——反向传播(Back Propogation)提供了理论支持,了解计算图在实际写程序过程中会有极大的帮助。本节将涉及一些基础的计算图知识,但并不要求读者事先对此有深入的了解。关于计算图的基础知识推荐阅读Christopher Olah的文章 [1] 。 一.Variable PyTorch在autograd模块中实现了计算图的相关功能,autograd中的核心数据结构是Variable。Variable封装了tensor,并记录对tensor的操作记录用来构建计算图。Variable的数据结构如图3-2所示,主要包含三个属性: data :保存variable所包含的tensor grad :保存 data 对应的梯度, grad