ACP大比拼:Eureka VS ZOOKEEPER
一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项 。 CAP的证明 上图是我们证明CAP的基本场景,网络中有两个节点N1和N2,可以简单的理解N1和N2分别是两台计算机,他们之间网络可以连通,N1中有一个应用程序A,和一个数据库V,N2也有一个应用程序B2和一个数据库V。现在,A和B是分布式系统的两个部分,V是分布式系统的数据存储的两个子数据库。 在满足一致性的时候,N1和N2中的数据是一样的,V0=V0。在满足可用性的时候,用户不管是请求N1或者N2,都会得到立即响应。在满足分区容错性的情况下,N1和N2有任何一方宕机,或者网络不通的时候,都不会影响N1和N2彼此之间的正常运作。 上图是分布式系统正常运转的流程,用户向N1机器请求数据更新,程序A更新数据库Vo为V1,分布式系统将数据进行同步操作M,将V1同步的N2中V0,使得N2中的数据V0也更新为V1,N2中的数据再响应N2的请求。 这里,可以定义N1和N2的数据库V之间的数据是否一样为一致性;外部对N1和N2的请求响应为可用性;N1和N2之间的网络环境为分区容错性。 这是正常运作的场景,也是理想的场景,然而现实是残酷的,当错误发生的时候,一致性和可用性还有分区容错性,是否能同时满足,还是说要进行取舍呢?