ElasticSearch

Elasticsearch/dataflow - connection timeout after ~60 concurrent connection

六眼飞鱼酱① 提交于 2020-12-13 03:15:57
问题 We host elatsicsearch cluster on Elastic Cloud and call it from dataflow (GCP). Job works fine in dev but when we deploy to prod we're seeing lots of connection timeout on the client side. Traceback (most recent call last): File "apache_beam/runners/common.py", line 1213, in apache_beam.runners.common.DoFnRunner.process File "apache_beam/runners/common.py", line 570, in apache_beam.runners.common.SimpleInvoker.invoke_process File "main.py", line 159, in process File "/usr/local/lib/python3.7

Bucket sort in composite aggregation?

跟風遠走 提交于 2020-12-13 03:15:44
问题 How can I do Bucket Sort in composite Aggregation? I need to do Composite Aggregation with Bucket sort. I have tried Sort with aggregation. I have tried composite aggregation. 回答1: I think this question, is in continuation to your previous question, so considered the same use case You need to use Bucket sort aggregation that is a parent pipeline aggregation which sorts the buckets of its parent multi-bucket aggregation. And please refer to this documentation on composite aggregation to know

Bucket sort in composite aggregation?

五迷三道 提交于 2020-12-13 03:15:43
问题 How can I do Bucket Sort in composite Aggregation? I need to do Composite Aggregation with Bucket sort. I have tried Sort with aggregation. I have tried composite aggregation. 回答1: I think this question, is in continuation to your previous question, so considered the same use case You need to use Bucket sort aggregation that is a parent pipeline aggregation which sorts the buckets of its parent multi-bucket aggregation. And please refer to this documentation on composite aggregation to know

Sort Aggregation in elastic seach?

流过昼夜 提交于 2020-12-13 03:07:11
问题 I have use case where I need to get all unique user ids from Elasticsearch and it should be sorted by timestamp. What I'm using currently is composite term aggregation with sub aggregation which will return the latest timestamp. (I can't sort it in client side as it slow down the script) Sample data in elastic search { "_index": "logstash-2020.10.29", "_type": "doc", "_id": "L0Urc3UBttS_uoEtubDk", "_version": 1, "_score": null, "_source": { "@version": "1", "@timestamp": "2020-10-29T06:56:00

Sort Aggregation in elastic seach?

Deadly 提交于 2020-12-13 03:06:37
问题 I have use case where I need to get all unique user ids from Elasticsearch and it should be sorted by timestamp. What I'm using currently is composite term aggregation with sub aggregation which will return the latest timestamp. (I can't sort it in client side as it slow down the script) Sample data in elastic search { "_index": "logstash-2020.10.29", "_type": "doc", "_id": "L0Urc3UBttS_uoEtubDk", "_version": 1, "_score": null, "_source": { "@version": "1", "@timestamp": "2020-10-29T06:56:00

RabbitMQ消息模式

耗尽温柔 提交于 2020-12-13 01:20:29
1、消息如何保证100%的投递? 2、幂等性概念 3、Confirm确认消息 4、Return返回消息 5、自定义消费者 消息 100% 的投递 消息如何保障 100%的投递成功? 什么是生产端的可靠性投递? u 保障消息的成功发出 u 保障MQ节点的成功接收 u 发送端收到MQ节点(Broker)确认应答 u 完善的消息进行补偿机制 BAT/TMD互联网大厂的解决方案: u 消息落库,对消息状态进行打标 u 消息的延迟投递,做二次确认,回调检查 幂等性概念 幂等性是什么? u 我们可以借鉴数据库的乐观锁机制 u 比如我们执行一条更新库存的SQL语句 u Update t_repository set count = count -1,version = version + 1 where version = 1 u Elasticsearch也是严格遵循幂等性概念,每次数据更新,version+1(博主博客前面有提到) 消费端-幂等性保障 在海量订单产生的业务高峰期,如何避免消息的重复消费问题? 消费实现幂等性,就意味着,我们的消息永远不会消费多次,即使我们收到了多条一样的消息 业界主流的幂等性操作 唯一ID+指纹码机制,利用数据库主键去重 利用Redis的原子性去实现 唯一ID+指纹码 机制 唯一ID+指纹码机制,利用数据库主键去重 Select count(1) from T

跟我学SpringCloud | 第十五篇:微服务利剑之APM平台(一)Skywalking

余生长醉 提交于 2020-12-12 19:43:56
SpringCloud系列教程 | 第十五篇:微服务利剑之APM平台(一)Skywalking Springboot: 2.1.7.RELEASE SpringCloud: Greenwich.SR2 [TOC] 1. Skywalking概述 Skywalking与2016年11月2日由国人吴晟在Github上传v1.0版本,用于提供分布式链路追踪功能,从5.x开始,成为一个功能较为完善的APM(Application Performance Management)系统,2019年4月17日从Apache孵化器毕业,正式成为Apache顶级项目。提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。官方对自己介绍是专为微服务,云原生和基于容器(Docker,Kubernetes,Mesos)架构而设计。 2. Skywalking主要功能 服务,服务实例,端点指标分析 根本原因分析 服务拓扑图分析 服务,服务实例和端点依赖性分析 慢服务检测 性能优化 分布式跟踪和上下文传播 数据库访问指标、检测慢速数据库访问语句(包括SQL) 告警 3. Skywalking主要特性 多种监控手段,语言探针和service mesh 多语言自动探针,Java,.NET Core和Node.JS 多种后端存储支持 轻量高效 模块化,UI、存储、集群管理多种机制可选 支持告警

ELK平台搭建

耗尽温柔 提交于 2020-12-12 17:32:29
我看大部分教程都是在linux搭建的,那么俺就搭建在win上面吧。 首先,下载E+L+K,下面这个地址都有这3个相关的软件包 Elasticsearch+Logstash+Kibana https://www.elastic.co/downloads 1、安装Logstash,Logstash的版本为:6.3.1 解压后,进入bin文件夹下,新建配置文件logstash.conf,让后输入下面内容 input { kafka{ bootstrap_servers => ["192.168.1.1:9092"] client_id => "test" group_id => "test" topics => ["test"] auto_offset_reset => "latest" codec => json{charset=>"UTF-8"} } } output { elasticsearch { hosts => ["192.168.1.1:9200"] codec => json{charset=>"UTF-8"} index=> "%{source}" } } stdin表示在控制台输入,也可以用其他方式输入,elasticsearch表示输出到elasticsearch,index表示json传参进来的index值映射到ES的index上面去。注意,如果传递有中文

Helm 部署EFK

我与影子孤独终老i 提交于 2020-12-12 15:24:16
Helm 部署EFK 这里关注一下helm elasticsearch 和kibana 的版本,必须一致 每个节点的/var/log/containers里存放着日志 [root@k8s-master efk]# pwd /root/efk [root@k8s-master elasticsearch]# kubectl create namespace efk 添加仓库 [root@k8s-master efk]# helm repo add incubator https://charts.helm.sh/incubator "incubator" has been added to your repositories 部署 Elasticsearch [root@k8s-master efk]# helm search elasticsearch NAME CHART VERSION APP VERSION DESCRIPTION incubator/elasticsearch 1.10.2 6.4.2 DEPRECATED Flexible and powerful open source, distributed... 后面的kibana 的也必须是6.4.2版本 [root@k8s-master efk]# helm search incubator/kibana -

Python 中更优雅的日志记录方案

二次信任 提交于 2020-12-12 09:40:24
“ 阅读本文大概需要 5 分钟。 ” 在 Python 中,一般情况下我们可能直接用自带的 logging 模块来记录日志,包括我之前的时候也是一样。在使用时我们需要配置一些 Handler、Formatter 来进行一些处理,比如把日志输出到不同的位置,或者设置一个不同的输出格式,或者设置日志分块和备份。但其实个人感觉 logging 用起来其实并不是那么好用,其实主要还是配置较为繁琐。 常见使用 首先看看 logging 常见的解决方案吧,我一般会配置输出到文件、控制台和 Elasticsearch。输出到控制台就仅仅是方便直接查看的;输出到文件是方便直接存储,保留所有历史记录的备份;输出到 Elasticsearch,直接将 Elasticsearch 作为存储和分析的中心,使用 Kibana 可以非常方便地分析和查看运行情况。 所以在这里我基本会对 logging 做如下的封装写法: import logging import sys from os import makedirs from os.path import dirname, exists from cmreslogging.handlers import CMRESHandler loggers = {} LOG_ENABLED = True # 是否开启日志 LOG_TO_CONSOLE = True #