scikit-learn - Convert pipeline prediction to original value/scale
问题 I've create a pipeline as follows (using the Keras Scikit-Learn API) estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, nb_epoch=50, batch_size=5, verbose=0))) pipeline = Pipeline(estimators) and fit it with pipeline.fit(trainX,trainY) If I predict with pipline.predict(testX) , I (believe) I get standardised predictions. How do I predict on testX so that predictedY it at the same scale as the actual (untouched