Cross validation in deep neural networks
问题 How do you perform cross-validation in a deep neural network? I know that to perform cross validation to will train it on all folds except one and test it on the excluded fold. Then do this for k fold times and average the accuries for each fold. How do you do this for each iteration. Do you update the parameters at each fold? Or you perform k-fold cross validation for each iteration? Or is each training on all folds but one fold considered as one iteration? 回答1: Cross-validation is a general