apply

In Mathematica, what does @@@ mean?

匿名 (未验证) 提交于 2019-12-03 00:52:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I've been working through problems on Project Euler , and some of the solutions that other people have posted use a triple-at-sign, i.e. '@@@'. In the help browser for v7, I find an entry for @@ (which says it's the infix version of 'Apply') but none for @@@. What does it mean? EDIT: Here's an example, which I think I can post without violating the spirit of Project Euler: bloc[n_, f_][t_] := {f @@@ #, #~Tr~f} & /@ Join @@ Partition[t, {n, n}, 1]; 回答1: As others have noted, @@@ is, technically, shorthand for Apply with an optional third

dask dataframe apply meta

匿名 (未验证) 提交于 2019-12-03 00:50:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm wanting to do a frequency count on a single column of a dask dataframe. The code works, but I get an warning complaining that meta is not defined. If I try to define meta I get an error AttributeError: 'DataFrame' object has no attribute 'name' . For this particular use case it doesn't look like I need to define meta but I'd like to know how to do that for future reference. Dummy dataframe and the column frequencies import pandas as pd from dask import dataframe as dd df = pd.DataFrame([['Sam', 'Alex', 'David', 'Sarah', 'Alice', 'Sam',

pandas数组(pandas Series)-(5)apply方法自定义函数

匿名 (未验证) 提交于 2019-12-03 00:37:01
有时候需要对 pandas Series 里的值进行一些操作,但是没有内置函数,这时候可以自己写一个函数,使用 pandas Series 的 apply 方法,可以对里面的每个值都调用这个函数,然后返回一个新的 Series import pandas as pd s = pd . Series ([ 1 , 2 , 3 , 4 , 5 ]) def add_one ( x ): return x + 1 print s . apply ( add_one ) # 结果: 0 2 1 3 2 4 3 5 4 6 dtype : int64 一个栗子: names = pd . Series ([ ‘ Andre Agassi ‘ , ‘ Barry Bonds ‘ , ‘ Christopher Columbus ‘ , ‘ Daniel Defoe ‘ , ‘ Emilio Estevez ‘ , ‘ Fred Flintstone ‘ , ‘ Greta Garbo ‘ , ‘ Humbert Humbert ‘ , ‘ Ivan Ilych ‘ , ‘ James Joyce ‘ , ‘ Keira Knightley ‘ , ‘ Lois Lane ‘ , ‘ Mike Myers ‘ , ‘ Nick Nolte ‘ , ‘ Ozzy Osbourne ‘ , ‘

bind call apply 的区别和使用

匿名 (未验证) 提交于 2019-12-03 00:07:01
bind call apply 的区别和使用: https://www.jianshu.com/p/015f9f15d6b3 在讲这个之前要理解一些概念,这些概念很重要,有人说过学会了javascript 的this 就基本会了一半的javascript 在 javascript 中,call 和 apply 都是为了改变某个函数运行时的上下文(context)而存在的,换句话说,就是为了改变函数体内部 this 的指向。 JavaScript 的一大特点是函数存在: 定义时上下文 运行时上下文 上下文是可以改变 如果要深入理解这个知识要开个javascript 内存管理机制和运行原理了,这里就不做过多的介绍了。 function Fruits () {} Fruits . prototype = { color : "red" , printf : function () { console . log ( "My color is " + this . color ); } } var apple = new Fruits ; apple . printf (); //My color is red // 改变this banana = { color : "yellow" } apple . printf . call ( banana ); //My color is

DataFrame中groupby与apply函数的使用

混江龙づ霸主 提交于 2019-12-02 22:32:05
在对data进行groupby后,并不能直接使用,后面可以跟可以用agg函数、apply函数 groupby和apply函数结合 def cal_rets(x): x['xxx'] = (x['f_nav_unit']/x['f_nav_unit'].shift(1)-1)[1:] return x rets=df.groupby('f_info_windcode').apply(cal_rets) rets = pd.DataFrame(rets) rets       来源: https://www.cnblogs.com/xiaodongsuibi/p/11765028.html

Passing multiple arguments to apply (Python)

旧街凉风 提交于 2019-12-02 22:29:46
I'm trying to clean up some code in Python to vectorize a set of features and I'm wondering if there's a good way to use apply to pass multiple arguments. Consider the following (current version): def function_1(x): if "string" in x: return 1 else: return 0 df['newFeature'] = df['oldFeature'].apply(function_1) With the above I'm having to write a new function (function_1, function_2, etc) to test for each substring "string" that I want to find. In an ideal world I could combine all of these redundant functions and use something like this: def function(x, string): if string in x: return 1 else:

【python】python中的apply(),applymap(),map() 的用法和区别

匿名 (未验证) 提交于 2019-12-02 22:11:45
在Python中如果想要对数据使用函数,可以借助apply(),applymap(),map() 来应用函数,括号里面可以是直接函数式,或者自定义函数(def)或者匿名函数(lambad) import pandas as pd import numpy as np from pandas import DataFrame from pandas import Series df1= DataFrame({ "sales1":[-1,2,3], "sales2":[3,-5,7], }) df1 1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply() df1.apply(lambda x :x.max()-x.min(),axis=1) #axis=1,表示按行对数据进行操作 #从下面的结果可以看出,我们使用了apply函数之后,系统自动按行找最大值和最小值计算,每一行输出一个值 0 4 1 7 2 4 dtype: int64 2、当我们要对数据框(DataFrame)的每一个数据进行操作时用applymap(),返回结果是DataFrame格式 df1.applymap(lambda x : 1 if x>0 else 0) #从下面的结果可以看出,我们使用了applymap函数之后, #系统自动对每一个数据进行判断,判断之后输出结果 3

python pandas.map apply applymap 三种方法小结

匿名 (未验证) 提交于 2019-12-02 22:11:45
pandas包的apply方法表示对DataFrame中的每一列元素应用函数。比如: 同时也可以在行方向做运算: map方法:这里的map方法有点像mapreduce中的map()方法,具体的过程是将数据集中的每一个元素进行函数处理,如下: df['a'] Name: a, dtype: float64 add = lambda x:x+1 df['a'].map(add) Name: a, dtype: float64 既然有map() 我们不妨看一看有没有reduce(),他的效果又是怎样的:reduce: reduceData = df['a'].reduce(add) 报错:'Series' object has no attribute 'reduce' 再次尝试: df['a'] Name: a, dtype: float64 f = lambda x,y:x+y reduceData = functools.reduce(f,df['a']) reduceData Out[28]: -2.659379404636298 可以得到,reduce在pandas中没有,在functools包中,主要的操作过程是: format = lambda x:'%.2f'%x df.applymap(format) 可以得出:map是以行或者列为单位,series的角度下进行操作