apache-spark

How to operate numPartitions, lowerBound, upperBound in the spark-jdbc connection?

霸气de小男生 提交于 2021-01-19 08:23:09
问题 I am trying to read a table on postgres db using spark-jdbc. For that I have come up with the following code: object PartitionRetrieval { var conf = new SparkConf().setAppName("Spark-JDBC").set("spark.executor.heartbeatInterval","120s").set("spark.network.timeout","12000s").set("spark.default.parallelism", "20") val log = LogManager.getLogger("Spark-JDBC Program") Logger.getLogger("org").setLevel(Level.ERROR) val conFile = "/home/myuser/ReconTest/inputdir/testconnection.properties" val

duplicate a column in pyspark data frame [duplicate]

◇◆丶佛笑我妖孽 提交于 2021-01-18 06:14:36
问题 This question already has answers here : Adding a new column in Data Frame derived from other columns (Spark) (3 answers) Closed 2 years ago . I have a data frame in pyspark like sample below. I would like to duplicate a column in the data frame and rename to another column name. Name Age Rate Aira 23 90 Ben 32 98 Cat 27 95 Desired output is : Name Age Rate Rate2 Aira 23 90 90 Ben 32 98 98 Cat 27 95 95 How can I do it? 回答1: Just df.withColumn("Rate2", df["Rate"]) or (in SQL) SELECT *, Rate AS

duplicate a column in pyspark data frame [duplicate]

孤者浪人 提交于 2021-01-18 06:05:42
问题 This question already has answers here : Adding a new column in Data Frame derived from other columns (Spark) (3 answers) Closed 2 years ago . I have a data frame in pyspark like sample below. I would like to duplicate a column in the data frame and rename to another column name. Name Age Rate Aira 23 90 Ben 32 98 Cat 27 95 Desired output is : Name Age Rate Rate2 Aira 23 90 90 Ben 32 98 98 Cat 27 95 95 How can I do it? 回答1: Just df.withColumn("Rate2", df["Rate"]) or (in SQL) SELECT *, Rate AS

duplicate a column in pyspark data frame [duplicate]

邮差的信 提交于 2021-01-18 06:04:42
问题 This question already has answers here : Adding a new column in Data Frame derived from other columns (Spark) (3 answers) Closed 2 years ago . I have a data frame in pyspark like sample below. I would like to duplicate a column in the data frame and rename to another column name. Name Age Rate Aira 23 90 Ben 32 98 Cat 27 95 Desired output is : Name Age Rate Rate2 Aira 23 90 90 Ben 32 98 98 Cat 27 95 95 How can I do it? 回答1: Just df.withColumn("Rate2", df["Rate"]) or (in SQL) SELECT *, Rate AS

Using broadcasted dataframe in pyspark UDF

|▌冷眼眸甩不掉的悲伤 提交于 2021-01-18 05:07:56
问题 Is it possible to use a broadcasted data frame in the UDF of a pyspark SQl application. My Code calls the broadcasted Dataframe inside a pyspark dataframe like below. fact_ent_df_data = sparkSession.sparkContext.broadcast(fact_ent_df.collect()) def generate_lookup_code(col1,col2,col3): fact_ent_df_count=fact_ent_df_data. select(fact_ent_df_br.TheDate.between(col1,col2), fact_ent_df_br.Ent.isin('col3')).count() return fact_ent_df_count sparkSession.udf.register("generate_lookup_code" ,

Using broadcasted dataframe in pyspark UDF

删除回忆录丶 提交于 2021-01-18 04:53:26
问题 Is it possible to use a broadcasted data frame in the UDF of a pyspark SQl application. My Code calls the broadcasted Dataframe inside a pyspark dataframe like below. fact_ent_df_data = sparkSession.sparkContext.broadcast(fact_ent_df.collect()) def generate_lookup_code(col1,col2,col3): fact_ent_df_count=fact_ent_df_data. select(fact_ent_df_br.TheDate.between(col1,col2), fact_ent_df_br.Ent.isin('col3')).count() return fact_ent_df_count sparkSession.udf.register("generate_lookup_code" ,

Using broadcasted dataframe in pyspark UDF

坚强是说给别人听的谎言 提交于 2021-01-18 04:53:05
问题 Is it possible to use a broadcasted data frame in the UDF of a pyspark SQl application. My Code calls the broadcasted Dataframe inside a pyspark dataframe like below. fact_ent_df_data = sparkSession.sparkContext.broadcast(fact_ent_df.collect()) def generate_lookup_code(col1,col2,col3): fact_ent_df_count=fact_ent_df_data. select(fact_ent_df_br.TheDate.between(col1,col2), fact_ent_df_br.Ent.isin('col3')).count() return fact_ent_df_count sparkSession.udf.register("generate_lookup_code" ,

Spark-HBase - GCP template (3/3) - Missing libraries?

不羁的心 提交于 2021-01-15 19:44:42
问题 I'm trying to test the Spark-HBase connector in the GCP context and tried to follow the instructions, which asks to locally package the connector, and I get the following error when submitting the job on Dataproc (after having completed these steps). Command (base) gcloud dataproc jobs submit spark --cluster $SPARK_CLUSTER --class com.example.bigtable.spark.shc.BigtableSource --jars target/scala-2.11/cloud-bigtable-dataproc-spark-shc-assembly-0.1.jar --region us-east1 -- $BIGTABLE_TABLE Error

Spark-HBase - GCP template (3/3) - Missing libraries?

99封情书 提交于 2021-01-15 19:41:48
问题 I'm trying to test the Spark-HBase connector in the GCP context and tried to follow the instructions, which asks to locally package the connector, and I get the following error when submitting the job on Dataproc (after having completed these steps). Command (base) gcloud dataproc jobs submit spark --cluster $SPARK_CLUSTER --class com.example.bigtable.spark.shc.BigtableSource --jars target/scala-2.11/cloud-bigtable-dataproc-spark-shc-assembly-0.1.jar --region us-east1 -- $BIGTABLE_TABLE Error

Spark-HBase - GCP template (3/3) - Missing libraries?

左心房为你撑大大i 提交于 2021-01-15 19:38:15
问题 I'm trying to test the Spark-HBase connector in the GCP context and tried to follow the instructions, which asks to locally package the connector, and I get the following error when submitting the job on Dataproc (after having completed these steps). Command (base) gcloud dataproc jobs submit spark --cluster $SPARK_CLUSTER --class com.example.bigtable.spark.shc.BigtableSource --jars target/scala-2.11/cloud-bigtable-dataproc-spark-shc-assembly-0.1.jar --region us-east1 -- $BIGTABLE_TABLE Error