I am trying to create a matrix of random numbers, but my solution is too long and looks ugly
random_matrix = [[random.random() for e in range(2)] for e in ra
First, create numpy
array then convert it into matrix
. See the code below:
import numpy
B = numpy.random.random((3, 4)) #its ndArray
C = numpy.matrix(B)# it is matrix
print(type(B))
print(type(C))
print(C)
x = np.int_(np.random.rand(10) * 10)
For random numbers out of 10. For out of 20 we have to multiply by 20.
#this is a function for a square matrix so on the while loop rows does not have to be less than cols.
#you can make your own condition. But if you want your a square matrix, use this code.
import random
import numpy as np
def random_matrix(R, cols):
matrix = []
rows = 0
while rows < cols:
N = random.sample(R, cols)
matrix.append(N)
rows = rows + 1
return np.array(matrix)
print(random_matrix(range(10), 5))
#make sure you understand the function random.sample
You can drop the range(len())
:
weights_h = [[random.random() for e in inputs[0]] for e in range(hiden_neurons)]
But really, you should probably use numpy.
In [9]: numpy.random.random((3, 3))
Out[9]:
array([[ 0.37052381, 0.03463207, 0.10669077],
[ 0.05862909, 0.8515325 , 0.79809676],
[ 0.43203632, 0.54633635, 0.09076408]])
Looks like you are doing a Python implementation of the Coursera Machine Learning Neural Network exercise. Here's what I did for randInitializeWeights(L_in, L_out)
#get a random array of floats between 0 and 1 as Pavel mentioned
W = numpy.random.random((L_out, L_in +1))
#normalize so that it spans a range of twice epsilon
W = W * 2 * epsilon
#shift so that mean is at zero
W = W - epsilon
An answer using map-reduce:-
map(lambda x: map(lambda y: ran(),range(len(inputs[0]))),range(hiden_neurons))