I have a set of data (X,Y). My independent variable values X are not unique, so there are multiple repeated values, I want to output a new array containing : X_unique, which is a list of unique values of X. Y_mean, the mean of all of the Y values corresponding to X_unique. Y_std, the standard deviation of all the Y values corresponding to X_unique.
x = data[:,0] y = data[:,1]
x_unique = np.unique(x) y_means = np.array([np.mean(y[x==u]) for u in x_unique]) y_stds = np.array([np.std(y[x==u]) for u in x_unique])
You can use binned_statistic
from scipy.stats that supports various statistic functions to be applied in chunks across a 1D array. To get the chunks, we need to sort and get positions of the shifts (where chunks change), for which np.unique
would be useful. Putting all those, here's an implementation -
from scipy.stats import binned_statistic as bstat # Sort data corresponding to argsort of first column sdata = data[data[:,0].argsort()] # Unique col-1 elements and positions of breaks (elements are not identical) unq_x,breaks = np.unique(sdata[:,0],return_index=True) breaks = np.append(breaks,data.shape[0]) # Use binned statistic to get grouped average and std deviation values idx_range = np.arange(data.shape[0]) avg_y,_,_ = bstat(x=idx_range, values=sdata[:,1], statistic='mean', bins=breaks) std_y,_,_ = bstat(x=idx_range, values=sdata[:,1], statistic='std', bins=breaks)
From the docs of binned_statistic
, one can also use a custom statistic function :
function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error.
Sample input, output -
In [121]: data Out[121]: array([[2, 5], [2, 2], [1, 5], [3, 8], [0, 8], [6, 7], [8, 1], [2, 5], [6, 8], [1, 8]]) In [122]: np.column_stack((unq_x,avg_y,std_y)) Out[122]: array([[ 0. , 8. , 0. ], [ 1. , 6.5 , 1.5 ], [ 2. , 4. , 1.41421356], [ 3. , 8. , 0. ], [ 6. , 7.5 , 0.5 ], [ 8. , 1. , 0. ]])
Pandas is done for such task :
data=np.random.randint(1,5,20).reshape(10,2) import pandas pandas.DataFrame(data).groupby(0).mean()
gives
1 0 1 2.666667 2 3.000000 3 2.000000 4 1.500000