可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
var phi = (90-lat)*(Math.PI/180); var theta = (lng+180)*(Math.PI/180); marker_mesh.position.x = ((rad) * Math.sin(phi)*Math.cos(theta)); marker_mesh.position.z = ((rad) * Math.sin(phi)*Math.sin(theta)); marker_mesh.position.y = ((rad) * Math.cos(phi));
given the above my marker is not translating into the correct position on a 3D sphere ... thoughts?
It is relatively close (on the same continent) but that close :\
given below ... it should be rendering in at
lat: 41.7307619 long: -71.276195
my globe has a boundRadius: 500px
the current result of the function is
x: -119.7801015013779
y: 332.8157297895266
z: 353.3927238766871

回答1:
Your formula differs slightly from the geodetic to ECEF calculation. Refer to the formulas on Dr Math Latitude and Longitude, GPS Conversion and Wikipedia Geodetic to/from ECEF coordinates. This projects the latitude, longitude to a flattened sphere (i.e. the real Earth is not perfectly spherical).
var cosLat = Math.cos(lat * Math.PI / 180.0); var sinLat = Math.sin(lat * Math.PI / 180.0); var cosLon = Math.cos(lon * Math.PI / 180.0); var sinLon = Math.sin(lon * Math.PI / 180.0); var rad = 6378137.0; var f = 1.0 / 298.257224; var C = 1.0 / Math.sqrt(cosLat * cosLat + (1 - f) * (1 - f) * sinLat * sinLat); var S = (1.0 - f) * (1.0 - f) * C; var h = 0.0; marker_mesh.position.x = (rad * C + h) * cosLat * cosLon; marker_mesh.position.y = (rad * C + h) * cosLat * sinLon; marker_mesh.position.z = (rad * S + h) * sinLat;
In your scenario, because it seems you're gunning for a perfect sphere, you will need to put f = 0.0 and rad = 500.0 instead. This will cause C and S to become 1.0, so, the simplified version of the formula reduces to:
var cosLat = Math.cos(lat * Math.PI / 180.0); var sinLat = Math.sin(lat * Math.PI / 180.0); var cosLon = Math.cos(lon * Math.PI / 180.0); var sinLon = Math.sin(lon * Math.PI / 180.0); var rad = 500.0; marker_mesh.position.x = rad * cosLat * cosLon; marker_mesh.position.y = rad * cosLat