转载自:https://blog.csdn.net/u013165921/article/details/77891913
CUDA9.0下载地址:链接:https://pan.baidu.com/s/1acwBDuGHac-C-qDhyeid7w 密码:4x16
CUDA9.0是目前最新的Cuda版本,VS2017也是目前最新的Visual Studio版本,当前(2017/09)网上很少有CUDA9.0+VS2017的配置。
CUDA9.0安装:
https://developer.nvidia.com/cuda-release-candidate-download,由于还是测试版,所以需要NVIDIA开发人员计划的成员资格。需登录以获取访问权限并完成此免费加入程序的简短申请(网盘或者贴吧是很好的资源…)。





设置环境变量:

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0 CUDA_LIB_PATH = %CUDA_PATH%\lib\x64 CUDA_BIN_PATH = %CUDA_PATH%\bin CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64 CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64
- 1
- 2
- 3
- 4
- 5




VS2017配置:




项目配置:
1.x64
2.x86(win32)
测试
// CUDA runtime 库 + CUBLAS 库 #include "cuda_runtime.h" #include "cublas_v2.h" #include <time.h> #include <iostream> using namespace std; // 定义测试矩阵的维度 int const M = 5; int const N = 10; int main() { // 定义状态变量 cublasStatus_t status; // 在 内存 中为将要计算的矩阵开辟空间 float *h_A = (float*)malloc (N*M*sizeof(float)); float *h_B = (float*)malloc (N*M*sizeof(float)); // 在 内存 中为将要存放运算结果的矩阵开辟空间 float *h_C = (float*)malloc (M*M*sizeof(float)); // 为待运算矩阵的元素赋予 0-10 范围内的随机数 for (int i=0; i<N*M; i++) { h_A[i] = (float)(rand()%10+1); h_B[i] = (float)(rand()%10+1); } // 打印待测试的矩阵 cout << "矩阵 A :" << endl; for (int i=0; i<N*M; i++){ cout << h_A[i] << " "; if ((i+1)%N == 0) cout << endl; } cout << endl; cout << "矩阵 B :" << endl; for (int i=0; i<N*M; i++){ cout << h_B[i] << " "; if ((i+1)%M == 0) cout << endl; } cout << endl; /* ** GPU 计算矩阵相乘 */ // 创建并初始化 CUBLAS 库对象 cublasHandle_t handle; status = cublasCreate(&handle); if (status != CUBLAS_STATUS_SUCCESS) { if (status == CUBLAS_STATUS_NOT_INITIALIZED) { cout << "CUBLAS 对象实例化出错" << endl; } getchar (); return EXIT_FAILURE; } float *d_A, *d_B, *d_C; // 在 显存 中为将要计算的矩阵开辟空间 cudaMalloc ( (void**)&d_A, // 指向开辟的空间的指针 N*M * sizeof(float) // 需要开辟空间的字节数 ); cudaMalloc ( (void**)&d_B, N*M * sizeof(float) ); // 在 显存 中为将要存放运算结果的矩阵开辟空间 cudaMalloc ( (void**)&d_C, M*M * sizeof(float) ); // 将矩阵数据传递进 显存 中已经开辟好了的空间 cublasSetVector ( N*M, // 要存入显存的元素个数 sizeof(float), // 每个元素大小 h_A, // 主机端起始地址 1, // 连续元素之间的存储间隔 d_A, // GPU 端起始地址 1 // 连续元素之间的存储间隔 ); cublasSetVector ( N*M, sizeof(float), h_B, 1, d_B, 1 ); // 同步函数 cudaThreadSynchronize(); // 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。 float a=1; float b=0; // 矩阵相乘。该函数必然将数组解析成列优先数组 cublasSgemm ( handle, // blas 库对象 CUBLAS_OP_T, // 矩阵 A 属性参数 CUBLAS_OP_T, // 矩阵 B 属性参数 M, // A, C 的行数 M, // B, C 的列数 N, // A 的列数和 B 的行数 &a, // 运算式的 α 值 d_A, // A 在显存中的地址 N, // lda d_B, // B 在显存中的地址 M, // ldb &b, // 运算式的 β 值 d_C, // C 在显存中的地址(结果矩阵) M // ldc ); // 同步函数 cudaThreadSynchronize(); // 从 显存 中取出运算结果至 内存中去 cublasGetVector ( M*M, // 要取出元素的个数 sizeof(float), // 每个元素大小 d_C, // GPU 端起始地址 1, // 连续元素之间的存储间隔 h_C, // 主机端起始地址 1 // 连续元素之间的存储间隔 ); // 打印运算结果 cout << "计算结果的转置 ( (A*B)的转置 ):" << endl; for (int i=0;i<M*M; i++){ cout << h_C[i] << " "; if ((i+1)%M == 0) cout << endl; } // 清理掉使用过的内存 free (h_A); free (h_B); free (h_C); cudaFree (d_A); cudaFree (d_B); cudaFree (d_C); // 释放 CUBLAS 库对象 cublasDestroy (handle); getchar(); return 0; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
