autoencoder的tensorflow实现

匿名 (未验证) 提交于 2019-12-03 00:19:01

from __future__ import division, print_function, absolute_import  import tensorflow as tf import numpy as np import matplotlib.pyplot as plt  # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=False)   # Visualize decoder setting # Parameters learning_rate = 0.01 training_epochs = 5 batch_size = 256 display_step = 1 examples_to_show = 10  # Network Parameters n_input = 784  # MNIST data input (img shape: 28*28)  # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input])  # hidden layer settings n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features weights = {     'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),     'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),     'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),     'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = {     'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),     'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),     'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),     'decoder_b2': tf.Variable(tf.random_normal([n_input])), }  # Building the encoder def encoder(x):     # Encoder Hidden layer with sigmoid activation #1     layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),                                    biases['encoder_b1']))     # Decoder Hidden layer with sigmoid activation #2     layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),                                    biases['encoder_b2']))     return layer_2   # Building the decoder def decoder(x):     # Encoder Hidden layer with sigmoid activation #1     layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),                                    biases['decoder_b1']))     # Decoder Hidden layer with sigmoid activation #2     layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),                                    biases['decoder_b2']))     return layer_2     # Construct model encoder_op = encoder(X) decoder_op = decoder(encoder_op)  # Prediction y_pred = decoder_op # Targets (Labels) are the input data. y_true = X  # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)   # Launch the graph with tf.Session() as sess:     # tf.initialize_all_variables() no long valid from     # 2017-03-02 if using tensorflow >= 0.12     if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:         init = tf.initialize_all_variables()     else:         init = tf.global_variables_initializer()     sess.run(init)     total_batch = int(mnist.train.num_examples/batch_size)     # Training cycle     for epoch in range(training_epochs):         # Loop over all batches         for i in range(total_batch):             batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0             # Run optimization op (backprop) and cost op (to get loss value)             _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})         # Display logs per epoch step         if epoch % display_step == 0:             print("Epoch:", '%04d' % (epoch+1),                   "cost=", "{:.9f}".format(c))      print("Optimization Finished!")      # # Applying encode and decode over test set     encode_decode = sess.run(         y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})     # Compare original images with their reconstructions     f, a = plt.subplots(2, 10, figsize=(10, 2))     for i in range(examples_to_show):         a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))         a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))     plt.show()    
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!