Find median in spark SQL for multiple double datatype columns

我的梦境 提交于 2019-12-01 05:13:00
Denny Lee

Which version of Apache Spark are you using out of curiosity? There were some fixes within the Apache Spark 2.0+ which included changes to approxQuantile.

If I was to run the pySpark code snippet below:

rdd = sc.parallelize([[1, 0.0], [1, 0.0], [1, 1.0], [1, 1.0], [1, 1.0], [1, 1.0]])
df = rdd.toDF(['id', 'num'])
df.createOrReplaceTempView("df")

with the median calculation using approxQuantile as:

df.approxQuantile("num", [0.5], 0.25)

or

spark.sql("select percentile_approx(num, 0.5) from df").show()

the results are:

  • Spark 2.0.0: 0.25
  • Spark 2.0.1: 1.0
  • Spark 2.1.0: 1.0

Note, as these are the approximate numbers (via approxQuantile) though in general this should work well. If you need the exact median, one approach is to use numpy.median. The code snippet below is updated for this df example based on gench's SO response to How to find the median in Apache Spark with Python Dataframe API?:

from pyspark.sql.types import *
import pyspark.sql.functions as F
import numpy as np

def find_median(values):
    try:
        median = np.median(values) #get the median of values in a list in each row
        return round(float(median),2)
    except Exception:
        return None #if there is anything wrong with the given values

median_finder = F.udf(find_median,FloatType())

df2 = df.groupBy("id").agg(F.collect_list("num").alias("nums"))
df2 = df2.withColumn("median", median_finder("nums"))

# print out
df2.show()

with the output of:

+---+--------------------+------+
| id|                nums|median|
+---+--------------------+------+
|  1|[0.0, 0.0, 1.0, 1...|   1.0|
+---+--------------------+------+

Updated: Spark 1.6 Scala version using RDDs

If you are using Spark 1.6, you can calculate the median using Scala code via Eugene Zhulenev's response How can I calculate the exact median with Apache Spark. Below is the modified code that works with our example.

import org.apache.spark.SparkContext._

  val rdd: RDD[Double] = sc.parallelize(Seq((0.0), (0.0), (1.0), (1.0), (1.0), (1.0)))

  val sorted = rdd.sortBy(identity).zipWithIndex().map {
    case (v, idx) => (idx, v)
  }

  val count = sorted.count()

  val median: Double = if (count % 2 == 0) {
    val l = count / 2 - 1
    val r = l + 1
    (sorted.lookup(l).head + sorted.lookup(r).head).toDouble / 2
  } else sorted.lookup(count / 2).head.toDouble

with the output of:

// output
import org.apache.spark.SparkContext._
rdd: org.apache.spark.rdd.RDD[Double] = ParallelCollectionRDD[227] at parallelize at <console>:34
sorted: org.apache.spark.rdd.RDD[(Long, Double)] = MapPartitionsRDD[234] at map at <console>:36
count: Long = 6
median: Double = 1.0

Note, this is calculating the exact median using RDDs - i.e. you will need to convert the DataFrame column into an RDD to perform this calculation.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!