Creating binned histograms in Spark

我只是一个虾纸丫 提交于 2019-12-01 01:34:12
zero323

In this particular case all you need is Unix timestamps and basic arithmetics:

def resample_to_minute(c, interval=1):
    t = 60 * interval
    return (floor(c / t) * t).cast("timestamp")

def resample_to_hour(c, interval=1):
    return resample_to_minute(c, 60 * interval)

df = sc.parallelize([
    ("2000-01-01 00:00:00", 0), ("2000-01-01 00:01:00", 1),
    ("2000-01-01 00:02:00", 2), ("2000-01-01 00:03:00", 3),
    ("2000-01-01 00:04:00", 4), ("2000-01-01 00:05:00", 5),
    ("2000-01-01 00:06:00", 6), ("2000-01-01 00:07:00", 7),
    ("2000-01-01 00:08:00", 8)
]).toDF(["timestamp", "data"])

(df.groupBy(resample_to_minute(unix_timestamp("timestamp"), 3).alias("ts"))
    .sum().orderBy("ts").show(3, False))

## +---------------------+---------+
## |ts                   |sum(data)|
## +---------------------+---------+
## |2000-01-01 00:00:00.0|3        |
## |2000-01-01 00:03:00.0|12       |
## |2000-01-01 00:06:00.0|21       |
## +---------------------+---------+

(df.groupBy(resample_to_hour(unix_timestamp("timestamp")).alias("ts"))
    .sum().orderBy("ts").show(3, False))
## +---------------------+---------+
## |ts                   |sum(data)|
## +---------------------+---------+
## |2000-01-01 00:00:00.0|36       |
## +---------------------+---------+

Example data from pandas.DataFrame.resample documentation.

In general case see Making histogram with Spark DataFrame column

Here is an answer using RDDs and not dataframes:

# Generating some data to test with 
import random
import datetime

startTS = 12345.0
array = [(startTS+60*k, random.randrange(10, 20)) for k in range(150)]

# Initializing a RDD
rdd = sc.parallelize(array)

# I first map the timestamps to datetime objects so I can use the datetime.replace 
# method to round the times
formattedRDD = (rdd
                .map(lambda (ts, data): (datetime.fromtimestamp(int(ts)), data))
                .cache())

# Putting the minute and second fields to zero in datetime objects is 
# exactly like rounding per hour. You can then reduceByKey to aggregate bins.
hourlyRDD = (formattedRDD
             .map(lambda (time, msg): (time.replace(minute=0, second=0), 1))
             .reduceByKey(lambda a, b : a + b))

hourlyHisto = hourlyRDD.collect()
print hourlyHisto
> [(datetime.datetime(1970, 1, 1, 4, 0), 60), (datetime.datetime(1970, 1, 1, 5, 0), 55), (datetime.datetime(1970, 1, 1, 3, 0), 35)]

In order to do daily aggregates you can use time.date() instead of time.replace(...). Also to bin per hour starting at a not-round date-time object you can increment the original time by the delta to the nearest round hour.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!