Confidence intervals for model prediction

最后都变了- 提交于 2019-12-01 01:18:51

问题


I am following along with a statsmodels tutorial

An OLS model is fitted with

formula = 'S ~ C(E) + C(M) + X' 
lm = ols(formula, salary_table).fit()
print lm.summary()

Predicted values are provided through:

lm.predict({'X' : [12], 'M' : [1], 'E' : [2]})

The result is returned as a single value array.

Is there a method to also return confidence intervals for the predicted value (prediction intervals) in statsmodels?

Thanks.


回答1:


We've been meaning to make this easier to get to. You should be able to use

from statsmodels.sandbox.regression.predstd import wls_prediction_std
prstd, iv_l, iv_u = wls_prediction_std(results)

If you have any problems, please file an issue on github.




回答2:


additionally you can try to use the get_prediction method.

values_to_predict = pd.DataFrame({'X' : [12], 'M' : [1], 'E' : [2]})
predictions = result.get_prediction(values_to_predict)
predictions.summary_frame(alpha=0.05)

I found the summary_frame() method buried here and you can find the get_prediction() method here. You can change the significance level of the confidence interval and prediction interval by modifying the "alpha" parameter.



来源:https://stackoverflow.com/questions/16248013/confidence-intervals-for-model-prediction

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!