每日一题_191011

孤街醉人 提交于 2019-11-30 23:09:16

如图所示,在平面四边形\(ABCD\)中,\(AB=1\),\(BC=2\),\(\triangle ACD\)为正三角形,则\(\triangle BCD\)面积的最大值为\(\underline{\qquad\qquad}\).


解析: 将\(BC\)边固定,则\(A\)点在以\(B\)为圆心,\(1\)为半径的圆上运动, 由于\(\triangle ACD\)为正三角形,因此


\(D\)点是在以\(E\)点为圆心,\(1\)为半径的圆上运动,其中\(E\)点是把\(B\)点绕着\(C\)点逆时针旋转\(60^\circ\)所得的点.因此显然当\(D\)点位于圆\(E\)的上端顶点时,\(\triangle BCD\)的面积最大,且此时面积最大值为\[ S=\dfrac{1}{2}\cdot |BC|\cdot \left(\dfrac{\sqrt{3}}{2}|BC|+1\right)=\sqrt{3}+1.\]

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!