Here's the task: I need to lock based on a filename. There can be up to a million different filenames. (This is used for large-scale disk-based caching). I want low memory usage and low lookup times, which means I need a GC'd lock dictionary. (Only in-use locks can be present in the dict).
The callback action can take minutes to complete, so a global lock is unacceptable. High throughput is critical.
I've posted my current solution below, but I'm unhappy with the complexity.
EDIT: Please do not post solutions that are not 100% correct. For example, a solution which permits a lock to be removed from the dictionary between the 'get lock object' phase and the 'lock' phase is NOT correct, whether or not it is an 'accepted' design pattern or not.
Is there a more elegant solution than this?
Thanks!
[EDIT: I updated my code to use looping vs. recursion based on RobV's suggestion]
[EDIT: Updated the code again to allow 'timeouts' and a simpler calling pattern. This will probably be the final code I use. Still the same basic algorithm as in the original post.]
[EDIT: Updated code again to deal with exceptions inside callback without orphaning lock objects]
public delegate void LockCallback();
/// <summary>
/// Provides locking based on a string key.
/// Locks are local to the LockProvider instance.
/// The class handles disposing of unused locks. Generally used for
/// coordinating writes to files (of which there can be millions).
/// Only keeps key/lock pairs in memory which are in use.
/// Thread-safe.
/// </summary>
public class LockProvider {
/// <summary>
/// The only objects in this collection should be for open files.
/// </summary>
protected Dictionary<String, Object> locks =
new Dictionary<string, object>(StringComparer.Ordinal);
/// <summary>
/// Synchronization object for modifications to the 'locks' dictionary
/// </summary>
protected object createLock = new object();
/// <summary>
/// Attempts to execute the 'success' callback inside a lock based on 'key'. If successful, returns true.
/// If the lock cannot be acquired within 'timoutMs', returns false
/// In a worst-case scenario, it could take up to twice as long as 'timeoutMs' to return false.
/// </summary>
/// <param name="key"></param>
/// <param name="success"></param>
/// <param name="failure"></param>
/// <param name="timeoutMs"></param>
public bool TryExecute(string key, int timeoutMs, LockCallback success){
//Record when we started. We don't want an infinite loop.
DateTime startedAt = DateTime.UtcNow;
// Tracks whether the lock acquired is still correct
bool validLock = true;
// The lock corresponding to 'key'
object itemLock = null;
try {
//We have to loop until we get a valid lock and it stays valid until we lock it.
do {
// 1) Creation/aquire phase
lock (createLock) {
// We have to lock on dictionary writes, since otherwise
// two locks for the same file could be created and assigned
// at the same time. (i.e, between TryGetValue and the assignment)
if (!locks.TryGetValue(key, out itemLock))
locks[key] = itemLock = new Object(); //make a new lock!
}
// Loophole (part 1):
// Right here - this is where another thread (executing part 2) could remove 'itemLock'
// from the dictionary, and potentially, yet another thread could
// insert a new value for 'itemLock' into the dictionary... etc, etc..
// 2) Execute phase
if (System.Threading.Monitor.TryEnter(itemLock, timeoutMs)) {
try {
// May take minutes to acquire this lock.
// Trying to detect an occurence of loophole above
// Check that itemLock still exists and matches the dictionary
lock (createLock) {
object newLock = null;
validLock = locks.TryGetValue(key, out newLock);
validLock = validLock && newLock == itemLock;
}
// Only run the callback if the lock is valid
if (validLock) {
success(); // Extremely long-running callback, perhaps throwing exceptions
return true;
}
} finally {
System.Threading.Monitor.Exit(itemLock);//release lock
}
} else {
validLock = false; //So the finally clause doesn't try to clean up the lock, someone else will do that.
return false; //Someone else had the lock, they can clean it up.
}
//Are we out of time, still having an invalid lock?
if (!validLock && Math.Abs(DateTime.UtcNow.Subtract(startedAt).TotalMilliseconds) > timeoutMs) {
//We failed to get a valid lock in time.
return false;
}
// If we had an invalid lock, we have to try everything over again.
} while (!validLock);
} finally {
if (validLock) {
// Loophole (part 2). When loophole part 1 and 2 cross paths,
// An lock object may be removed before being used, and be orphaned
// 3) Cleanup phase - Attempt cleanup of lock objects so we don't
// have a *very* large and slow dictionary.
lock (createLock) {
// TryEnter() fails instead of waiting.
// A normal lock would cause a deadlock with phase 2.
// Specifying a timeout would add great and pointless overhead.
// Whoever has the lock will clean it up also.
if (System.Threading.Monitor.TryEnter(itemLock)) {
try {
// It succeeds, so no-one else is working on it
// (but may be preparing to, see loophole)
// Only remove the lock object if it
// still exists in the dictionary as-is
object existingLock = null;
if (locks.TryGetValue(key, out existingLock)
&& existingLock == itemLock)
locks.Remove(key);
} finally {
// Remove the lock
System.Threading.Monitor.Exit(itemLock);
}
}
}
}
}
// Ideally the only objects in 'locks' will be open operations now.
return true;
}
}
Usage example
LockProvider p = new LockProvider();
bool success = p.TryExecute("filename",1000,delegate(){
//This code executes within the lock
});
Depending on what you are doing with the files (you say disk based caching so I assume reads as well as writes) then I would suggest trying something based upon ReaderWriterLock, if you can upgrade to .Net 3.5 then try ReaderWriterLockSlim instead as it performs much better.
As a general step to reducing the potential endless recursion case in your example change the first bit of the code to the following:
do
{
// 1) Creation/aquire phase
lock (createLock){
// We have to lock on dictionary writes, since otherwise
// two locks for the same file could be created and assigned
// at the same time. (i.e, between TryGetValue and the assignment)
if (!locks.TryGetValue(key, out itemLock))
locks[key] = itemLock = new Object(); //make a new lock!
}
// Loophole (part 1):
// Right here - this is where another thread could remove 'itemLock'
// from the dictionary, and potentially, yet another thread could
// insert a new value for 'itemLock' into the dictionary... etc, etc..
// 2) Execute phase
lock(itemLock){
// May take minutes to acquire this lock.
// Real version would specify a timeout and a failure callback.
// Trying to detect an occurence of loophole above
// Check that itemLock still exists and matches the dictionary
lock(createLock){
object newLock = null;
validLock = locks.TryGetValue(key, out newLock);
validLock = validLock && newLock == itemLock;
}
// Only run the callback if the lock is valid
if (validLock) callback(); // Extremely long-running callback.
}
// If we had an invalid lock, we have to try everything over again.
} while (!validLock);
This replaces your recursion with a loop which avoids any chance of a StackOverflow by endless recursion.
That solution sure looks brittle and complex. Having public callbacks inside locks is bad practice. Why won't you let LockProvider
return some sort of 'lock' objects, so that the consumers do the lock themselves. This separates the locking of the locks
dictionary from the execution. It might look like this:
public class LockProvider
{
private readonly object globalLock = new object();
private readonly Dictionary<String, Locker> locks =
new Dictionary<string, Locker>(StringComparer.Ordinal);
public IDisposable Enter(string key)
{
Locker locker;
lock (this.globalLock)
{
if (!this.locks.TryGetValue(key, out locker))
{
this.locks[key] = locker = new Locker(this, key);
}
// Increase wait count ínside the global lock
locker.WaitCount++;
}
// Call Enter and decrease wait count óutside the
// global lock (to prevent deadlocks).
locker.Enter();
// Only one thread will be here at a time for a given locker.
locker.WaitCount--;
return locker;
}
private sealed class Locker : IDisposable
{
private readonly LockProvider provider;
private readonly string key;
private object keyLock = new object();
public int WaitCount;
public Locker(LockProvider provider, string key)
{
this.provider = provider;
this.key = key;
}
public void Enter()
{
Monitor.Enter(this.keyLock);
}
public void Dispose()
{
if (this.keyLock != null)
{
this.Exit();
this.keyLock = null;
}
}
private void Exit()
{
lock (this.provider.globalLock)
{
try
{
// Remove the key before releasing the lock, but
// only when no threads are waiting (because they
// will have a reference to this locker).
if (this.WaitCount == 0)
{
this.provider.locks.Remove(this.key);
}
}
finally
{
// Release the keyLock inside the globalLock.
Monitor.Exit(this.keyLock);
}
}
}
}
}
And the LockProvider
can be used as follows:
public class Consumer
{
private LockProvider provider;
public void DoStufOnFile(string fileName)
{
using (this.provider.Enter(fileName))
{
// Long running operation on file here.
}
}
}
Note that Monitor.Enter
is called before we enter the try
statement (using), which means in certain host environments (such as ASP.NET and SQL Server) we have the possibility of locks never being released when an asynchronous exception happens. Hosts like ASP.NET and SQL Server aggressively kill threads when timeouts occur. Rewriting this with the Enter outside the Monitor.Enter
inside the try
is a bit tricky though.
I hope this helps.
Could you not simply used a named Mutex, with the name derived from your filename?
Although not a lightweight synchronization primitive, it's simpler than managing your own synchronized dictionary.
However if you really do want to do it this way, I'd have thought the following implementation looks simpler. You need a synchonized dictionary - either the .NET 4 ConcurrentDictionary
or your own implementation if you're on .NET 3.5 or lower.
try
{
object myLock = new object();
lock(myLock)
{
object otherLock = null;
while(otherLock != myLock)
{
otherLock = lockDictionary.GetOrAdd(key, myLock);
if (otherLock != myLock)
{
// Another thread has a lock in the dictionary
if (Monitor.TryEnter(otherLock, timeoutMs))
{
// Another thread still has a lock after a timeout
failure();
return;
}
else
{
Monitor.Exit(otherLock);
}
}
}
// We've successfully added myLock to the dictionary
try
{
// Do our stuff
success();
}
finally
{
lockDictionary.Remove(key);
}
}
}
There doesn't seem to be an elegant way to do this in .NET, although I have improved the algorithm thanks to @RobV's suggestion of a loop. Here is the final solution I settled on.
It is immune to the 'orphaned reference' bug that seems to be typical of the standard pattern followed by @Steven's answer.
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;
namespace ImageResizer.Plugins.DiskCache {
public delegate void LockCallback();
/// <summary>
/// Provides locking based on a string key.
/// Locks are local to the LockProvider instance.
/// The class handles disposing of unused locks. Generally used for
/// coordinating writes to files (of which there can be millions).
/// Only keeps key/lock pairs in memory which are in use.
/// Thread-safe.
/// </summary>
public class LockProvider {
/// <summary>
/// The only objects in this collection should be for open files.
/// </summary>
protected Dictionary<String, Object> locks =
new Dictionary<string, object>(StringComparer.Ordinal);
/// <summary>
/// Synchronization object for modifications to the 'locks' dictionary
/// </summary>
protected object createLock = new object();
/// <summary>
/// Attempts to execute the 'success' callback inside a lock based on 'key'. If successful, returns true.
/// If the lock cannot be acquired within 'timoutMs', returns false
/// In a worst-case scenario, it could take up to twice as long as 'timeoutMs' to return false.
/// </summary>
/// <param name="key"></param>
/// <param name="success"></param>
/// <param name="failure"></param>
/// <param name="timeoutMs"></param>
public bool TryExecute(string key, int timeoutMs, LockCallback success){
//Record when we started. We don't want an infinite loop.
DateTime startedAt = DateTime.UtcNow;
// Tracks whether the lock acquired is still correct
bool validLock = true;
// The lock corresponding to 'key'
object itemLock = null;
try {
//We have to loop until we get a valid lock and it stays valid until we lock it.
do {
// 1) Creation/aquire phase
lock (createLock) {
// We have to lock on dictionary writes, since otherwise
// two locks for the same file could be created and assigned
// at the same time. (i.e, between TryGetValue and the assignment)
if (!locks.TryGetValue(key, out itemLock))
locks[key] = itemLock = new Object(); //make a new lock!
}
// Loophole (part 1):
// Right here - this is where another thread (executing part 2) could remove 'itemLock'
// from the dictionary, and potentially, yet another thread could
// insert a new value for 'itemLock' into the dictionary... etc, etc..
// 2) Execute phase
if (System.Threading.Monitor.TryEnter(itemLock, timeoutMs)) {
try {
// May take minutes to acquire this lock.
// Trying to detect an occurence of loophole above
// Check that itemLock still exists and matches the dictionary
lock (createLock) {
object newLock = null;
validLock = locks.TryGetValue(key, out newLock);
validLock = validLock && newLock == itemLock;
}
// Only run the callback if the lock is valid
if (validLock) {
success(); // Extremely long-running callback, perhaps throwing exceptions
return true;
}
} finally {
System.Threading.Monitor.Exit(itemLock);//release lock
}
} else {
validLock = false; //So the finally clause doesn't try to clean up the lock, someone else will do that.
return false; //Someone else had the lock, they can clean it up.
}
//Are we out of time, still having an invalid lock?
if (!validLock && Math.Abs(DateTime.UtcNow.Subtract(startedAt).TotalMilliseconds) > timeoutMs) {
//We failed to get a valid lock in time.
return false;
}
// If we had an invalid lock, we have to try everything over again.
} while (!validLock);
} finally {
if (validLock) {
// Loophole (part 2). When loophole part 1 and 2 cross paths,
// An lock object may be removed before being used, and be orphaned
// 3) Cleanup phase - Attempt cleanup of lock objects so we don't
// have a *very* large and slow dictionary.
lock (createLock) {
// TryEnter() fails instead of waiting.
// A normal lock would cause a deadlock with phase 2.
// Specifying a timeout would add great and pointless overhead.
// Whoever has the lock will clean it up also.
if (System.Threading.Monitor.TryEnter(itemLock)) {
try {
// It succeeds, so no-one else is working on it
// (but may be preparing to, see loophole)
// Only remove the lock object if it
// still exists in the dictionary as-is
object existingLock = null;
if (locks.TryGetValue(key, out existingLock)
&& existingLock == itemLock)
locks.Remove(key);
} finally {
// Remove the lock
System.Threading.Monitor.Exit(itemLock);
}
}
}
}
}
// Ideally the only objects in 'locks' will be open operations now.
return true;
}
}
}
Consuming this code is very simple:
LockProvider p = new LockProvider();
bool success = p.TryExecute("filename",1000,delegate(){
//This code executes within the lock
});
来源:https://stackoverflow.com/questions/5565395/better-solution-to-multithreading-riddle