Plot a best fit line R [duplicate]

杀马特。学长 韩版系。学妹 提交于 2019-11-30 05:45:07

Depending on your actual data and how you want to smooth it, and why you want to smooth it there are various options.

I am showing you examples with linear regression (first and second order) and local regression (LOESS). These may or may not be the good statistical models to use for your data, but it is difficult to tell without seeing it. In any case:

time <- 0:100
temp <- 20+ 0.01 * time^2 + 0.8 * time + rnorm(101, 0, 5)

# Generate first order linear model
lin.mod <- lm(temp~time)

# Generate second order linear model
lin.mod2 <- lm(temp~I(time^2)+time)

# Calculate local regression
ls <- loess(temp~time)

# Predict the data (passing only the model runs the prediction 
# on the data points used to generate the model itself)
pr.lm <- predict(lin.mod)
pr.lm2 <- predict(lin.mod2)
pr.loess <- predict(ls)

par(mfrow=c(2,2))
plot(time, temp, "l", las=1, xlab="Time", ylab="Temperature")
lines(pr.lm~time, col="blue", lwd=2)

plot(time, temp, "l", las=1, xlab="Time", ylab="Temperature")
lines(pr.lm2~time, col="green", lwd=2)

plot(time, temp, "l", las=1, xlab="Time", ylab="Temperature")
lines(pr.loess~time, col="red", lwd=2)

Another option would be to use a moving average.

For instance:

library(zoo)
mov.avg <- rollmean(temp, 5, fill=NA)
plot(time, temp, "l")
lines(time, mov.avg, col="orange", lwd=2)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!