SuperImpose Histogram fits in one plot ggplot

♀尐吖头ヾ 提交于 2019-11-30 05:31:37

Here's a little snippet of Rcpp that bins data very efficiently - on my computer it takes about a second to bin 100,000,000 observations:

library(Rcpp)
cppFunction('
  std::vector<int> bin3(NumericVector x, double width, double origin = 0) {
    int bin, nmissing = 0;
    std::vector<int> out;

    NumericVector::iterator x_it = x.begin(), x_end;
    for(; x_it != x.end(); ++x_it) {
      double val = *x_it;
      if (ISNAN(val)) {
        ++nmissing;
      } else {
        bin = (val - origin) / width;
        if (bin < 0) continue;

        // Make sure there\'s enough space
        if (bin >= out.size()) {
          out.resize(bin + 1);
        }
        ++out[bin];
      }
    }

    // Put missing values in the last position
    out.push_back(nmissing);
    return out;
  }
')

x8 <- runif(1e8)
system.time(bin3(x8, 1/100))
#   user  system elapsed 
#  1.373   0.000   1.373 

That said, hist is pretty fast here too:

system.time(hist(x8, breaks = 100, plot = F))
#   user  system elapsed 
#  7.281   1.362   8.669 

It's straightforward to use bin3 to make a histogram or frequency polygon:

# First we create some sample data, and bin each column

library(reshape2)
library(ggplot2)

df <- as.data.frame(replicate(5, runif(1e6)))
bins <- vapply(df, bin3, 1/100, FUN.VALUE = integer(100 + 1))

# Next we match up the bins with the breaks
binsdf <- data.frame(
  breaks = c(seq(0, 1, length = 100), NA),
  bins)

# Then melt and plot
binsm <- subset(melt(binsdf, id = "breaks"), !is.na(breaks))
qplot(breaks, value, data = binsm, geom = "line", colour = variable)

FYI, the reason I had bin3 on hand is that I'm working on how to make this speed the default in ggplot2 :)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!