Understanding Time complexity calculation for Dijkstra Algorithm

可紊 提交于 2019-11-29 20:08:48

Dijkstra's shortest path algorithm is O(ElogV) where:

  • V is the number of vertices
  • E is the total number of edges

Your analysis is correct, but your symbols have different meanings! You say the algorithm is O(VElogV) where:

  • V is the number of vertices
  • E is the maximum number of edges attached to a single node.

Let's rename your E to N. So one analysis says O(ElogV) and another says O(VNlogV). Both are correct and in fact E = O(VN). The difference is that ElogV is a tighter estimation.

let n be the number of vertices and m be the number of edges.

Since with Dijkstra's algorithm you have O(n) delete-mins and O(m) decrease_keys, each costing O(logn), the total run time using binary heaps will be O(log(n)(m + n)). It is totally possible to amortize the cost of decrease_key down to O(1) using Fibonacci heaps resulting in a total run time of O(nlogn+m) but in practice this is often not done since the constant factor penalties of FHs are pretty big and on random graphs the amount of decrease_keys is way lower than its respective upper bound (more in the range of O(n*log(m/n), which is way better on sparse graphs where m = O(n)). So always be aware of the fact that the total run time is both dependent on your data structures and the input class.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!