Dijkstra’s Shortest Path Algorithm

实现详见:https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
需要注意的是,priority_queue并无法更新内部的元素,因此我们更新dist的同时,直接把新的距离加入pq即可。pq里虽然有outdated的dist,但是由于距离过长,他们并不会更新dist。
// If there is shorted path to v through u.
if (dist[v] > dist[u] + weight) {
// Updating distance of v
dist[v] = dist[u] + weight;
pq.push(make_pair(dist[v], v));
}
时间复杂度 O(ElogV)
787. Cheapest Flights Within K Stops
本题的实质是 Dijkstra’s Shortest Path Algorithm,只不过追加了一个约束条件step。
class Solution {
public:
typedef tuple<int,int,int> ti; // (dist,u,step)
struct edge{
int end;
int weight;
};
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
vector<vector<edge>> graph(n,vector<edge>());
for (auto flight:flights){
graph[flight[0]].push_back({flight[1],flight[2]});
}
priority_queue<ti,vector<ti>,greater<ti>> q;
q.emplace(0,src,K+1);
while (!q.empty()){
auto [dist,u,step]=q.top(); q.pop();
if (u==dst) return dist;
if (step==0) continue;
for (auto [v,w]:graph[u]){
q.emplace(dist+w,v,step-1);
}
}
return -1;
}
};