Shared semaphore between user and kernel spaces

余生颓废 提交于 2019-11-28 21:13:19

问题


Short version

Is it possible to share a semaphore (or any other synchronization lock) between user space and kernel space? Named POSIX semaphores have kernel persistence, that's why I was wondering if it is possible to also create, and/or access them from kernel context.

Searching the internet didn't help much due to the sea of information on normal usage of POSIX semaphores.

Long version

I am developing a unified interface to real-time systems in which I have some added book keeping to take care of, protected by a semaphore. These book keepings are done on resource allocation and deallocation, which is done in non-real-time context.

With RTAI, the thread waiting and posting a semaphore however needs to be in real-time context. This means that using RTAI's named semaphore means switching between real-time and non-real-time context on every wait/post in user space, and worse, creating a short real-time thread for every sem/wait in kernel space.

What I am looking for is a way to share a normal Linux or POSIX semaphore between kernel and user spaces so that I can safely wait/post it in non-real-time context.

Any information on this subject would be greatly appreciated. If this is not possible, do you have any other ideas how this task could be accomplished?1

1 One way would be to add a system call, have the semaphore in kernel space, and have user space processes invoke that system call and the semaphore would be all managed in kernel space. I would be happier if I didn't have to patch the kernel just because of this though.


回答1:


Well, you were in the right direction, but not quite -

Linux named POSIX semaphore are based on FUTex, which stands for Fast User-space Mutex. As the name implies, while their implementation is assisted by the kernel, a big chunk of it is done by user code. Sharing such a semaphore between kernel and user space would require re-implementing this infrastructure in the kernel. Possible, but certainly not easy.

SysV Semaphores on the other hand are implemented completely in kernel and are only accessible to user space via standard system calls (e.g. sem_timedwait() and friends).

This means that every SysV related operations (semaphore creation, taking or release) is actually implemented in the kernel and you can simply call the underlying kernel function from your code to take the same semaphore from the kernel is needed.

Thus, your user code will simply call sem_timedwait(). That's the easy part.

The kernel part is just a little bit more tricky: you have to find the code that implement sem_timedwait() and related calls in the kernel (they are are all in the file ipc/sem.c) and create a replica of each of the functions that does what the original function does without the calls to copy_from_user(...) and copy_to_user(..) and friends.

The reason for this is that those kernel function expect to be called from a system call with a pointer to a user buffer, while you want to call them with parameters in kernel buffers.

Take for example sem_timedwait() - the relevant kernel function is sys_timedwait() in ipc/sem.c (see here: http://lxr.free-electrons.com/source/ipc/sem.c#L1537). If you copy this function in your kernel code and just remove the parts that do copy_from_user() and copy_to_user() and simply use the passed pointers (since you'll call them from kernel space), you'll get kernel equivalent functions that can take SysV semaphore from kernel space, along side user space - so long as you call them from user context in the kernel (if you don't know what this last sentence mean, I highly recommend reading up on Linux Device Drivers, 3rd edition).

Best of luck.




回答2:


One solution I can think of is to have a /proc (or /sys or whatever) file on a main kernel module where writing 0/1 to it (or read from/write to it) would cause it to issue an up/down on a semaphore. Exporting that semaphore allows other kernel modules to directly access it while user applications would go through the /proc file system.

I'd still wait to see if the original question has an answer.




回答3:


I'm not really experienced on this by any means, but here's my take. If you look at glibc's implementation of sem_open, and sem_wait, it's really just creating a file in /dev/shm, mmap'ing a struct from it, and using atomic operations on it. If you want to access the named semaphore from user space, you will probably have to patch the tmpfs subsystem. However, I think this would be difficult, as it wouldn't be straightforward to determine if a file is meant to be a named semaphore.

An easier way would probably be to just reuse the kernel's semaphore implementation and have the kernel manage the semaphore for userspace processes. To do this, you would write a kernel module which you associate with a device file. Then define two ioctl's for the device file, one for wait, and one for post. Here is a good tutorial on writing kernel modules, including setting up a device file and adding I/O operations for it. http://www.freesoftwaremagazine.com/articles/drivers_linux. I don't know exactly how to implement an ioctl operation, but I think you can just assign a function to the ioctl member of the file_operations struct. Not sure what the function signature should be, but you could probably figure it out by digging around in the kernel source.




回答4:


As I'm sure you know, even the best working solution to this would likely be very ugly. If I were in your place, I would simply concede the battle and use rendezvous points to sync the processes




回答5:


I have read your project's README and I have the following observations. Apologies in advance:

Firstly there already is a universal interface to real time systems. It is called POSIX; certainly VxWorks, Integrity and QNX are POSIX compliant and in my experience there are very few problems with portability if you develop within the POSIX API. Whether POSIX is sane or not is another matter, but it's the one we all use.

[The reason most RTOSes are POSIX compliant is because one of the big markets for them is defence equipment. And the US DoD won't let you use an OS for their non-IT equipment (eg Radars) unless it is POSIX compliant... This has pretty much made it commercially impossible to do an RTOS without giving it POSIX]

Secondly Linux itself can be made into a pretty good real time OS by applying the PREMPT_RT patch set. Of all the RTOSes out there this is probably the best one at the moment from the point of view of making efficient use of all these multi core CPUs. However it's not quite such a hard-realtime OS as the others, so its quid pro quo.

RTAI takes a different approach of in effect placing their own RTOS underneath Linux and making Linux nothing more than one task running in their OS. This approach is ok up to a point, but the big penalty of RTAI is that the real time bit is now (as far as I can tell) not POSIX compliant (though the API looks like they've just stuck rt_ on the front of some POSIX function names) and interaction with other things is now, as you're discovering, quite complicated.

PREEMPT_RT is a much more intrusive patch set than RTAI, but the payback is that everything else (like POSIX and valgrind) stays completely normal. Plus nice things like FTrace are available. Book keeping is then a case of merely using existing tools, not having to write new ones. Also it looks like PREEMPT_RT is gradually worming its way into the mainstream Linux kernel anyway. That would render other patch sets like RTAI pretty much pointless.

So Linux + PREEMPT_RT gives us realtime POSIX plus a bunch of tools, just like all the other RTOSes out there; commonality across the board. Which kinda sounds like the goal of your project.

I apologise for not helping with the with the "how" of your project, and it is highly ungentlemanly of me to query the "why?" of it too. But I feel it is important to know that there are established things out there that seem to heavily overlap with what you're trying to do. Unseating King POSIX is going to be difficult.




回答6:


I would like to answer this differently: you don't want to do this. There are good reasons why there is no interface to do this kind of thing and there are good reasons why all other kernel subsystems are designed and implemented to never need a lock shared between user and kernel space. The complexity of lock ordering and implicit locking in unexpected places will quickly get out of hand if you start playing around with userland that can prevent the kernel from doing certain things.

Let me recall a very long debugging session I did around 15 years ago to at least shed some light what complex problems you can run into. I was involved in developing a file system where the large portion of the code was in userland. Something like FUSE.

The kernel would do a filesystem operation, package it into a message and send it to the userland daemon and wait for a reply. The userland daemon reads the message, does stuff and writes a reply to the kernel which wakes up and continues with the operation. Simple concept.

One thing you need to understand about filesystems is locking. When you're looking up a name of a file, for example "foo/bar", the kernel somehow gets the node for the directory "foo" then locks it and asks it if it has the file "bar". The filesystem code somehow finds "bar", locks it and then unlocks "foo". The locking protocol is quite straight forward (unless you're doing a rename), parent always gets locked before the child and the child is locked before the parent lock is released. The lookup message for the file is what would get sent to our userland daemon while the directory was still locked, when the daemon replied the kernel would proceed to first lock "bar" and then unlock "foo".

I don't even remember the symptoms we were debugging, but I remember the issue was not trivially reproducible, it required hours and hours of filesystem torture programs until it manifested itself. But after a few weeks we figured out what was going on. Let's say that the full path to our file was "/a/b/c/foo/bar". We're in the process of doing a lookup on "bar", which means that we're holding the lock on "foo". The daemon is a normal userland process so some operations it does can block and can be preempted too. It's actually talking over the network so it can block for a long time. While we're waiting for the userland daemon some other process want to look up "foo" for some reason. To do this, it has the node for "c", locked of course, and asks it to look up "foo". It manages to find it and attempts to lock it (it has to be locked before we can release the lock on "c") and waits for the lock on "foo" to be released. Another process comes in an wants to look up "c", it of course ends up waiting for that lock while holding the lock on "b". Another process waits for "b" and holds "a". Yet another process wants "a" and holds the lock on "/".

This is not a problem, not yet. This sometimes happens in normal filesystems too, locks can cascade all the way up to the root, you wait for a while for a slow disk, the disk responds, the congestions eases up and everyone gets their locks and everything keeps running fine. In our case though, the reason for holding the lock a long time was because the remote server for our distributed filesystem didn't respond. X seconds later the userland daemon times out and just before responding to the kernel that the lookup operation on "bar" has failed it logs a message to syslog with a timestamp. One of the things that the timestamp needs is the timezone information, so it needs to open "/etc/localtime", of course to do that, it needs to start looking up "/etc" and for that it needs to lock "/". "/" is already locked by someone else, so the userland daemon waits for that someone else to unlock "/" while that someone else waits through a chain of 5 processes and locks for the daemon to respond. The system ends up in a total deadlock.

Now, maybe your code will not have problems like this. You're talking about a real-time system so there might be a level of control you have that normal kernels don't. But I'm not sure if adding an unexpected layer of locking complexity would even let you keep real time properties of the system, or really make sure that nothing you do in userland will ever create a deadlock cascade. If you don't page, if you never touch any file descriptor, if you never do memory operations and a bunch of other things I can't really think of right now you could get away with a lock shared between userland and kernel, but it will be hard and you'll probably find unexpected problems.




回答7:


I was thinking about ways that kernel and user land share things directly i.e. without syscall/copyin-out cost. One thing I remembered was the RDMA model where the kernel writes/reads directly from user space, with synchronization of course. You may want to explore that model and see if it works for your purpose.



来源:https://stackoverflow.com/questions/17391276/shared-semaphore-between-user-and-kernel-spaces

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!