AES256 NSString Encryption in iOS

依然范特西╮ 提交于 2019-11-28 18:53:54

EDIT: The links below refer to an older implementation. The latest version is called RNCryptor.

Your code doesn't use iOS's built-in AES implementation. It has its own custom implementation. AESEncryptWithPassphrase: also incorrectly generates the key, throwing away most of the entropy in the passphrase.

On iOS, you should be using the CCCrypt*() functions for AES. You should also make sure that you understand what is happening in your encryption and decryption routines. It is very easy to write encryption code that looks correct (in that you cannot read the output by inspection), but is extremely insecure.

See Properly encrypting with AES with CommonCrypto for an explanation of the problems with the above implementation, and how to properly use AES on iOS. Note that iOS 5 now has CCKeyDerivationPBKDF available.

There is no requirement to Base-64 encode your string prior to encryption. Base-64 encoding is used in cases where you need to convert binary data into a form that can be easily sent over email or other places where control characters would be a problem. It converts 8-bit binary data in 7-bit ASCII data. That's not necessary or useful here.


EDIT: It is critical that you carefully read the explanation of how to use this code. It is dangerous to simply cut and paste security code and hope it works. That said, the full source to RNCryptManager is available as part of the Chapter 11 example code for iOS 5 Programming Pushing the Limits and may be helpful [EDIT: This is old code; I recommend RNCryptor now, linked at the top of the answer]. The book (which should be available next week despite what the site says) includes a much longer discussion of how to use this code, including how to improve performance and deal with very large datasets.

NSData with category just fine for AES encryption, I didnt check zip file but this should work for you;

#import <CommonCrypto/CommonCryptor.h>
@implementation NSData (AESAdditions)
- (NSData*)AES256EncryptWithKey:(NSString*)key {
    // 'key' should be 32 bytes for AES256, will be null-padded otherwise
    char keyPtr[kCCKeySizeAES256 + 1]; // room for terminator (unused)
    bzero(keyPtr, sizeof(keyPtr)); // fill with zeroes (for padding)

    // fetch key data
    [key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

    NSUInteger dataLength = [self length];

    //See the doc: For block ciphers, the output size will always be less than or
    //equal to the input size plus the size of one block.
    //That's why we need to add the size of one block here
    size_t bufferSize           = dataLength + kCCBlockSizeAES128;
    void* buffer                = malloc(bufferSize);

    size_t numBytesEncrypted    = 0;
    CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,
                                          keyPtr, kCCKeySizeAES256,
                                          NULL /* initialization vector (optional) */,
                                          [self bytes], dataLength, /* input */
                                          buffer, bufferSize, /* output */
                                          &numBytesEncrypted);

    if (cryptStatus == kCCSuccess)
    {
        //the returned NSData takes ownership of the buffer and will free it on deallocation
        return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];
    }

    free(buffer); //free the buffer;
    return nil;
}

- (NSData*)AES256DecryptWithKey:(NSString*)key {
    // 'key' should be 32 bytes for AES256, will be null-padded otherwise
    char keyPtr[kCCKeySizeAES256 + 1]; // room for terminator (unused)
    bzero(keyPtr, sizeof(keyPtr)); // fill with zeroes (for padding)

    // fetch key data
    [key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

    NSUInteger dataLength = [self length];

    //See the doc: For block ciphers, the output size will always be less than or
    //equal to the input size plus the size of one block.
    //That's why we need to add the size of one block here
    size_t bufferSize           = dataLength + kCCBlockSizeAES128;
    void* buffer                = malloc(bufferSize);

    size_t numBytesDecrypted    = 0;
    CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,
                                          keyPtr, kCCKeySizeAES256,
                                          NULL /* initialization vector (optional) */,
                                          [self bytes], dataLength, /* input */
                                          buffer, bufferSize, /* output */
                                          &numBytesDecrypted);

    if (cryptStatus == kCCSuccess)
    {
        //the returned NSData takes ownership of the buffer and will free it on deallocation
        return [NSData dataWithBytesNoCopy:buffer length:numBytesDecrypted];
    }

    free(buffer); //free the buffer;
    return nil;
}
@end

Use it wrapper functions like ;

- (NSData*) encryptString:(NSString*)plaintext withKey:(NSString*)key {
        return [[plaintext dataUsingEncoding:NSUTF8StringEncoding] AES256EncryptWithKey:key];
}

- (NSString*) decryptData:(NSData*)ciphertext withKey:(NSString*)key {
        return [[[NSString alloc] initWithData:[ciphertext AES256DecryptWithKey:key]
                                      encoding:NSUTF8StringEncoding] autorelease];
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!