Shape recognition with numpy/scipy (perhaps watershed)

旧巷老猫 提交于 2019-11-28 18:26:51

@Hooked has already answered most of your question, but I was in the middle of writing this up when he answered, so I'll post it in the hopes that it's still useful...

You're trying to jump through a few too many hoops. You don't need watershed_ift.

You use scipy.ndimage.label to differentiate separate objects in a boolean array and scipy.ndimage.find_objects to find the bounding box of each object.

Let's break things down a bit.

import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt

def draw_circle(grid, x0, y0, radius):
    ny, nx = grid.shape
    y, x = np.ogrid[:ny, :nx]
    dist = np.hypot(x - x0, y - y0)
    grid[dist < radius] = True
    return grid

# Generate 3 circles...
a = np.zeros((512, 512), dtype=np.bool)
draw_circle(a, 100, 200, 30)
draw_circle(a, 400, 350, 20)
draw_circle(a, 200, 260, 20)

# Label the objects in the array. 
labels, numobjects = ndimage.label(a)

# Now find their bounding boxes (This will be a tuple of slice objects)
# You can use each one to directly index your data. 
# E.g. a[slices[0]] gives you the original data within the bounding box of the
# first object.
slices = ndimage.find_objects(labels)

#-- Plotting... -------------------------------------
fig, ax = plt.subplots()
ax.imshow(a)
ax.set_title('Original Data')

fig, ax = plt.subplots()
ax.imshow(labels)
ax.set_title('Labeled objects')

fig, axes = plt.subplots(ncols=numobjects)
for ax, sli in zip(axes.flat, slices):
    ax.imshow(labels[sli], vmin=0, vmax=numobjects)
    tpl = 'BBox:\nymin:{0.start}, ymax:{0.stop}\nxmin:{1.start}, xmax:{1.stop}'
    ax.set_title(tpl.format(*sli))
fig.suptitle('Individual Objects')

plt.show()

Hopefully that makes it a bit clearer how to find the bounding boxes of the objects.

Use the ndimage library from scipy. The function label places a unique tag on each block of pixels that are within a threshold. This identifies the unique clusters (shapes). Starting with your definition of a:

from scipy import ndimage

image_threshold = .5
label_array, n_features =  ndimage.label(a>image_threshold)

# Plot the resulting shapes
import pylab as plt
plt.subplot(121)
plt.imshow(a)
plt.subplot(122)
plt.imshow(label_array)
plt.show()

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!