Plot histogram with colors taken from colormap

♀尐吖头ヾ 提交于 2019-11-28 18:14:58

The hist command returns a list of patches, so you can iterate over them and set their color like so:

import numpy as n
import matplotlib.pyplot as plt

# Random gaussian data.
Ntotal = 1000
data = 0.05 * n.random.randn(Ntotal) + 0.5

# This is  the colormap I'd like to use.
cm = plt.cm.get_cmap('RdYlBu_r')

# Plot histogram.
n, bins, patches = plt.hist(data, 25, normed=1, color='green')
bin_centers = 0.5 * (bins[:-1] + bins[1:])

# scale values to interval [0,1]
col = bin_centers - min(bin_centers)
col /= max(col)

for c, p in zip(col, patches):
    plt.setp(p, 'facecolor', cm(c))

plt.show()

To get the colors, you need to call the colormap with a value between 0 and 1. Resulting figure:

An alternative approach is to use plt.bar which takes in a list of colors. To determine the widths and heights you can use numpy.histogram. Your colormap can be used by finding the range of the x-values and scaling them from 0 to 1.

import numpy as n
import matplotlib.pyplot as plt

# Random gaussian data.
Ntotal = 1000
data = 0.05 * n.random.randn(Ntotal) + 0.5

# This is  the colormap I'd like to use.
cm = plt.cm.get_cmap('RdYlBu_r')

# Get the histogramp
Y,X = n.histogram(data, 25, normed=1)
x_span = X.max()-X.min()
C = [cm(((x-X.min())/x_span)) for x in X]

plt.bar(X[:-1],Y,color=C,width=X[1]-X[0])
plt.show()

While it isn't what you asked for, if someone else stumbles across this (like I did) looking for the way to do the coloration by height of the bins instead of order, the following code based on Bas's answer would work:

import numpy as np
import matplotlib.pyplot as plt

Ntotal = 1000
data = 0.05 * np.random.randn(Ntotal) + 0.5
cm = plt.cm.get_cmap('RdYlBu_r')

n, bins, patches = plt.hist(data, 25, normed=1, color='green')
# To normalize your values
col = (n-n.min())/(n.max()-n.min())
for c, p in zip(col, patches):
    plt.setp(p, 'facecolor', cm(c))
plt.show()

I like Bas Swinckels answer, but given that the colormap cm take as parameter a value between 0 and 1, a simpler algorithm would be like this

import matplotlib.pyplot as plt

Ntotal = 1000
data = 0.05 * n.random.randn(Ntotal) + 0.5

cm = plt.cm.RdBu_r

n, bins, patches = plt.hist(data, 25, normed=1, color='green')
for i, p in enumerate(patches):
    plt.setp(p, 'facecolor', cm(i/25)) # notice the i/25

plt.show()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!