How to optimize this image iteration in numpy?

▼魔方 西西 提交于 2019-11-28 06:48:22

问题


I'm using this code to detect green color in the image.

The problem is this iteration is really slow.

How to make it faster? If it is using numpy, How to do it in numpy way?

def convertGreen(rawimg):
    width, height, channels = rawimg.shape
    size = (w, h, channels) = (width, height, 1)
    processedimg = np.zeros(size, np.uint8)
    for wimg in range(0,width):
        for himg in range(0,height):
            blue = rawimg.item(wimg,himg,0)
            green = rawimg.item(wimg,himg,1)
            red = rawimg.item(wimg,himg,2)
            exg = 2*green-red-blue
            if(exg > 50):
                processedimg.itemset((wimg,himg,0),exg)

    return processedimg

回答1:


Try simply this:

blue = rawimg[:,:,0]
green = rawimg[:,:,1]
red = rawimg[:,:,2]
exg = 2*green-red-blue
processedimg = np.where(exg > 50, exg, 0)



回答2:


I've only dabbled with numpy as a hobbyist, but I believe that you could take advantage of fromfunction which creates a new np array from an existing one https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfunction.html

Here is what I think might work in that case - which would take advantage of numpy's speed:

def handle_colors(img, x, y):
    blue = img.item(x,y,0)
    green = img.item(x,y,1)
    red = img.item(x,y,2)
    exg = 2*green-red-blue
    if exg > 50:
        return (exg, green, red)
    return blue, green, red

def convertGreen(rawimg):
    processedimg = np.fromfunction(lambda i, j: handle_colors(rawimg, i, j), rawimg.shape)
    return processedimg


来源:https://stackoverflow.com/questions/42991524/how-to-optimize-this-image-iteration-in-numpy

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!